Muro di Trombe e labirinto termico – Strategie bioclimatiche per il clima mediterraneo

Autori

  • Fabrizio Tucci ‘Sapienza’ Università di Roma (Italia)
  • Kristina Mitrik ‘Sapienza’ Università di Roma (Italia)
  • Lavinia Montagner ‘Sapienza’ Università di Roma (Italia)

DOI:

https://doi.org/10.69143/2464-9309/18142025

Parole chiave:

sistemi bioclimatici, analisi decisionale multicriteriale, soluzioni standardizzate, efficienza energetica, simulazione energetica

Abstract

La ricerca indaga l’integrazione di Trombe Wall System (TWS) e Thermal Labyrinth Ventilation System (TLVS) come strategie bioclimatiche per i climi mediterranei. Lo studio unisce analisi teorica, casi studio, indagine di mercato e database di componenti con Analisi Multicriteriale e simulazioni parametriche. I risultati confermano la presenza sul mercato di elementi, componenti e materiali, idonei all’integrazione dei due sistemi ed evidenziano come un TWS con massa termica di 20 cm riduca i fabbisogni di riscaldamento fino al 50%, mentre il TLVS garantisce un raffrescamento di 6-8 °C in quanto le superfici sagomate incrementano del 15% lo scambio termico e l’omogeneità dei flussi. La ricerca ha dimostrato che l’integrazione dei due sistemi produce benefici sinergici in termini di risparmio energetico e comfort indoor, offrendo al contempo linee guida replicabili.

 

Info sull'articolo

Ricevuto: 15/09/2025; Revisionato: 21/10/2025; Accettato: 22/10/2025

Downloads

I dati di download non sono ancora disponibili.

##plugins.generic.articleMetricsGraph.articlePageHeading##

Biografie autore

Fabrizio Tucci, ‘Sapienza’ Università di Roma (Italia)

Architetto e PhD, è Professore Ordinario di Progettazione ambientale presso l’Università ‘Sapienza’ di Roma (Italia), dove è Responsabile Scientifico del PNRR Flagship Project 2 ‘Energy and Digital Transition’ del Rome Technopole. Già Direttore del Dipartimento PDTA, da ottobre 2024 ricopre la carica di Direttore dell’Area Progettazione Ambientale e Qualità della Progettazione e di Coordinatore del Comitato Qualità della Progettazione presso l’Agenzia del Demanio. Da 30 anni è Responsabile Scientifico di progetti e ricerche nazionali e internazionali incentrati sulla qualità del progetto e della progettazione ambientale, sul rapporto tra progetto e innovazione tecnologica, sulla sostenibilità ambientale e sociale nei processi di rigenerazione architettonica e urbana.
E-mail: fabrizio.tucci@uniroma1.it

Kristina Mitrik, ‘Sapienza’ Università di Roma (Italia)

Architetto, è Dottoranda in Progettazione Tecnologica Ambientale presso il Dipartimento PDTA. La sua ricerca si basa sui sistemi passivi e sulle strategie sostenibili nell’ambito del progetto Rome Technopole, finanziato dal PNRR.
E-mail: kristina.mitrik@uniroma1.it

Lavinia Montagner, ‘Sapienza’ Università di Roma (Italia)

Architetto, è Dottoranda in Progettazione Tecnologica Ambientale presso il Dipartimento PDTA. La sua ricerca si basa sui sistemi di involucro bioclimatico per edifici terziari in climi mediterranei, nell’ambito del progetto Rome Technopole.
E-mail: lavinia.montagner@uniroma1.it

Riferimenti bibliografici

A’zamovich, S. K. (2022), “Determination of Rational Values of the Parameters of an Unventilated Trombe Wall Using the Method of Multicriteria Optimization for the Climatic Conditions of Uzbekistan”, in International Journal of Sustainable Construction Engineering and Technology, vol. 13, issue 3, pp. 123-134. [Online] Available at: doi.org/10.30880/ijscet.2022.13.03.012 [Accessed 12 September 2025].

Abbassi, F., Naili, N. and Dehmani, L. (2022), “Optimum Trombe wall thickness in the Mediterranean Tunisian context – An energetic and economic study”, in Energy Science and Engineering, vol. 10, issue 8, pp. 2930-2939. [Online] Available at: doi.org/10.1002/ese3.1179 [Accessed 12 September 2025].

Abdelsamea, A., Hassan, H., Shokry, H., Asawa, T. and Mahmoud, H. (2025), “An Innovative Multi-Story Trombe Wall as a Passive Cooling and Heating Technique in Hot Climate Regions – A Simulation-Optimization Study”, in Buildings, vol. 15, issue 7, article 1550, pp. 1-36. [Online] Available at: doi.org/10.3390/buildings15071150 [Accessed 12 September 2025].

Annan, G. R. and Nehme, B. A. (2016), “Energy Efficient Building Design Optimization Using an Underground Thermal Labyrinth”, in Second International ASHRAE Conference – Efficient Building Design – Materials and HVAC Equipment Technologies, Maamari Auditorium, American University of Beirut, Liban, September 22-23, 2016, American Society of Heating Refrigerating and Air-Conditioning Engineers, New York, pp. 162-167. [Online] Available at: store.accuristech.com/standards/energy-efficient-building-design-optimization-using-an-underground-thermal-labyrinth?product_id=1929536&srsltid=AfmBOopezUylZOL2jD_H2cB1fHTkrj6pu7D jmrSSxhIMe4LUuKN5j3az#full [Accessed 12 September 2025].

Asdaghi, H. and Fayaz, R. (2023), “Optimal Specifications of a Trombe Wall in Low-Rise Residential Buildings of Mashhad”, in Applied Solar Energy, vol. 59, issue 4, pp. 542-556. [Online] Available at: doi.org/10.3103/S0003701X2260117X [Accessed 12 September 2025].

Balali, A. and Yunusa-Kaltungo, A. (2025), “Drivers and barriers to the adoption of passive energy design in buildings”, in Energy and Buildings, vol. 328, article 115148, pp. 1-20. [Online] Available at: doi.org/10.1016/j.enbuild.2024.115148 [Accessed 17 October 2025].

Bori, D. (2006), Il Raffrescamento Passivo degli Edifici – Tecniche, Tecnologie, Esempi – Cenni di Termofisica Applicata, Sistemi Editoriali, Napoli.

Briga Sá, A., Boaventura-Cunha, J., Lanzinha, J.-C. and Paiva, A. (2017), “An experimental analysis of the Trombe wall temperature fluctuations for high range climate conditions – Influence of ventilation openings and shading devices”, in Energy and Buildings, vol. 138, pp. 546-558. [Online] Available at: doi.org/10.1016/j.enbuild.2016.12.085 [Accessed 12 September 2025].

Briga-Sá, A., Paiva, A., Lanzinha, J.-C., Boaventura-Cunha, J. and Fernandes, L. (2021), “Influence of air vents management on Trombe Wall temperature fluctuations – An experimental analysis under real climate conditions”, in Energies, vol. 14, issue 16, article 5043, pp. 1-22. [Online] Available at: doi.org/10.3390/en14165043 [Accessed 12 September 2025].

Buono, M. (1998), L’architettura del vento – Soluzioni tecnologiche per il raffrescamento passivo, CLEAN Edizioni, Napoli.

Cabeza, L. F., Bai, Q., Bertoldi, P., Kihila, J. M., Lucena, A. F. P., Mata, E., Mirasgedis, S., Novikova, A. and Saheb, A. (2023), “Buildings”, in IPCC – Intergovernmental Panel on Climate Change, Climate Change 2022 – Mitigation of Climate Change – Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, pp. 953-1048. [Online] Available at: doi.org/10.1017/9781009157926.011 [Accessed 12 September 2025].

Caffari, F., Calabrese, N., Murano, G. and Signoretti, P. (eds) (2024), La consistenza del parco immobiliare nazionale, ENEA, Roma. [Online] Available at: pubblicazioni.enea.it/download.html?task=download.send&id=698:la-consistenza-del-parco-immobiliare-nazionale&catid=3 [Accessed 12 September 2025].

der Wieden, M. B., Braungardt, S., Hoerner, M. and Bischof, J. (2023), Minimum Energy Performance Standards for Non-Residential Buildings – EU requirements and national implementation. [Online] Available at: iwu.de/fileadmin/publikationen/news/2023_IWU_EtAl_Hoerner-EtAl_MEPS-for-NRB.pdf [Accessed 12 September 2025].

Di Turi, S., Ronchetti, L. and Sannino, R. (2023), “Towards the objective of Net ZEB – Detailed energy analysis and cost assessment for new office buildings in Italy”, in Energy and Buildings, vol. 279, article 112707, pp. 1-19. [Online] Available at: doi.org/10.1016/j.enbuild.2022.112707 [Accessed 12 September 2025].

Elsaid, A. M., Hashem, F. A., Mohamed, H. A. and Ahmed, M. S. (2023), “The energy savings achieved by various Trombe solar wall enhancement techniques for heating and cooling applications – A detailed review”, in Solar Energy Materials and Solar Cells, vol. 254, article 112228, pp. 1-50. [Online] Available at: doi.org/10.1016/j.solmat.2023.112228 [Accessed 12 September 2025].

European Commission (2021), Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – Fit for 55 – Delivering the EU’s 2030 climate target on the way to climate neutrality, document 52021DC0550, COM/2021/550 final. [Online] Available at: eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021DC0550 [Accessed 16 September 2025].

European Parliament and Council of the European Union (2024), Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the energy performance of buildings (recast), document 32024L1275, PE/102/2023/REV/1. [Online] Available at: eur-lex.europa.eu/eli/dir/2024/1275/oj/eng [Accessed 12 September 2025].

European Parliament and Council of the European Union (2021), Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’), document 32021R1119, PE/27/2021/REV/1. [Online] Available at: eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32021R1119 [Accessed 12 September 2025].

Ferrucci, M. and Peron, F. (2018), “Ancient Use of Natural Geothermal Resources – Analysis of Natural Cooling of 16th Century Villas in Costozza (Italy) as a Reference for Modern Buildings”, in Sustainability, vol. 10, issue 12, article 4340, pp. 1-20. [Online] Available at: doi.org/10.3390/su10124340 [Accessed 12 September 2025].

Furszyfer Del Rio, D. F., Sovacool, B. K. and Griffiths, S. (2021), “Culture, energy and climate sustainability: the adoption of smart home technologies”, in Energy Research & Social Science, vol. 2, article 100035, pp. 1-19. [Online] Available at: doi.org/10.1016/j.egycc.2021.100035 [Accessed 17 October 2025].

Ghandi, H. and Leone, M. F. (2024), “The Potential of One-Sided Traditional Windcatchers for Outdoor Use as a Sustainable Urban Feature”, in Urban Science, vol. 8, issue 4, article 229, pp. 1-24. [Online] Available at: doi.org/10.3390/urbansci8040229 [Accessed 12 September 2025].

Givoni, B. (1994), Passive and Low Energy Cooling of Buildings, John Wiley and Sons, Toronto.

Grosjean, A., Touati, K., Alonzo, G., Ravat, H. C., Houot, T., El Mendili, Y., Nougarèdes, B. and Camara, N. (2025), “Experimental Raw Earth Building for Passive Cooling – A Case Study for Agricultural Application in a Mediterranean Climate”, in Buildings, vol. 15, issue 15, article 2603, pp. 1-19. [Online] Available at: doi.org/10.3390/buildings15152603 [Accessed 12 September 2025].

Gu, W., Li, G., Xiermaimaiti, A. and Ma, T. (2023), “A review of recent techniques in performance augmentation and evaluation metrics of Trombe walls”, in Energy and Buildings, vol. 301, article 113693, pp. 1-34. [Online] Available at: doi.org/10.1016/j.enbuild.2023.113693 [Accessed 12 September 2025].

Hejazi, M. and Hejazi, B. (2013), “Cooling performance of Persian wind towers”, in Brebbia, C. A. (ed.), Eco-Architecture IV – Harmonisation between Architecture and Nature – ERES 2025 – 14th International Conference on Earthquake Resistant Engineering Structures, Edinburgh, United Kingdom, June 11-13, 2025, WIT Transaction on Ecology and the Environment, vol. 165, WIT Press, Southampton (UK), pp. 197-207. [Online] Available at: doi.org/10.2495/ARC120181 [Accessed 12 September 2025].

Hernandez-Perez, I., Rodriguez-Ake, A., Sauceda-Carvajal, D., Hernandez-Lopez, I., Kumar, B. and Zavala-Guillen, I. (2025), “Experimental Thermal Assessment of a Trombe Wall Under a Semi-Arid Mediterranean Climate of Mexico”, in Energies, vol. 18, issue 1, article 185, pp. 1-17. [Online] Available at: doi.org/10.3390/en18010185 [Accessed 12 September 2025].

Hu, Z., He, W., Ji, J. and Zhang, S. (2017), “A review on the application of Trombe wall system in buildings”, in Renewable and Sustainable Energy Reviews, vol. 70, pp. 976-987. [Online] Available at: doi.org/10.1016/j.rser.2016.12.003 [Accessed 12 September 2025].

IEA – International Energy Agency (2023), Italy 2023 – Energy Policy Review, IEA, Paris. [Online] Available at: iea.blob.core.windows.net/assets/71b328b3-3e5b-4c04-8a22-3ead575b3a9a/Italy_2023_EnergyPolicyReview.pdf [Accessed 12 September 2025].

IEA – International Energy Agency (2018), The Future of Cooling – Opportunities for energy-efficient air conditioning, IEA, Paris. [Online] Available at: iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c-9c0cb5e7d525/The_Future_of_Cooling.pdf [Accessed 12 September 2025].

Kostikov, S., Grinkrug, M. and Yiqiang, J. (2020), “Comparative technical and economic analysis of the Trombe wall use in the heat supply system at different climatic conditions”, in Journal of Physics | Conference Series, vol. 1614, article 012064, pp. 1-8. [Online] Available at: doi.org/10.1088/1742-6596/1614/1/012064 [Accessed 12 September 2025].

Laribi, A., Bégot, S., Surdyk, D., Ait-Oumeziane, Y., Lepiller, V., Désévaux, P., El Zein, N. and De Carvalho, A. R. (2025), “Experimental study of the influence of the vents on the thermal performance of a Trombe wall”, in Energy and Buildings, vol. 328, article 115176, pp. 1-15. [Online] Available at: doi.org/10.1016/j.enbuild.2024.115176 [Accessed 12 September 2025].

Leang, E., Tittelein, P., Zalewski, L. and Lassue, S. (2020), “Impact of a composite Trombe wall incorporating phase change materials on the thermal behavior of an individual house with low energy consumption”, in Energies, vol. 13, issue 18, article 4872, pp. 1-32. [Online] Available at: doi.org/10.3390/en13184872 [Accessed 12 September 2025].

Lechner, N. (2008), Heating, Cooling, Lighting – Sustainable Design Methods for Architects, John Wiley & Sons, New Jersey.

Lichołai, L., Starakiewicz, A., Krasoń, J. and Miąsik, P. (2021), “The influence of glazing on the functioning of a Trombe wall containing a phase change material”, in Energies, vol. 14, issue 17, article 5243, pp. 1-19. [Online] Available at: doi.org/10.3390/en14175243 [Accessed 12 September 2025].

Lohmann, V. and Santos, P. (2020), “Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment – Experimental and Numerical Assessments”, in Energies, vol. 13, issue 11, article 2744, pp. 1-25. [Online] Available at: doi.org/10.3390/en13112744 [Accessed 12 September 2025].

Marmion, P., Pradinuk, R., Woods, A., Guity, A. and Rehmanji, I. (2012), “Large Dynamic Thermal Labyrinth – A Step Towards Net Zero Energy Use in Acute Care Hospitals”, in 2012 ACEEE | The 17th Biennial ACEE Summer Study on Energy Efficiency in Buildings – Fueling Our Future with Efficiency, American Council for an Energy-Efficient Economy, Pacific Grove (CA), vol. 13, pp. 215-226. [Online] Available at: aceee.org/files/proceedings/2012/data/papers/0193-000399.pdf [Accessed 12 September 2025].

Matos, A. M., Delgado, J. M. P. Q. and Guimarães, A. S. (2022), “Energy-Efficiency Passive Strategies for Mediterranean Climate – An Overview”, in Energies, vol. 15, issue 7, article 2572, pp. 1-20. [Online] Available at: doi.org/10.3390/en15072572 [Accessed 12 September 2025].

Mihalakakou, G., Souliotis, M., Papadaki, M., Halkos, G., Paravantis, J., Makridis, S. and Papaefthimiou, S. (2022), “Applications of earth-to-air heat exchangers – A holistic review”, in Renewable and Sustainable Energy Reviews, vol. 155, article 111921, pp. 1-24. [Online] Available at: doi.org/10.1016/j.rser.2021.111921 [Accessed 12 September 2025].

Ministero della Transizione Ecologica (2021), Strategia per la Riqualificazione Energetica del Parco Immobiliare Nazionale. [Online] Available at: circabc.europa.eu/ui/group/8f5f9424-a7ef-4dbf-b914-1af1d12ff5d2/library/aa97dcc4-bb5d-423b-b3c7-40ff6d77133b/details [Accessed 12 September 2025].

Ministro dello Sviluppo Economico (2015), Decreto interministeriale 26 giugno 2015 – Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici – Requisiti specifici per gli edifici esistenti soggetti a riqualificazione energetica – Appendice B (Allegato 1, Capitolo 4). [Online] Available at: mimit.gov.it/images/stories/normativa/DM_requisiti_minimi_appendiceB.pdf [Accessed 12 September 2025].

Mo, W., Zhang, G., Yao, X., Li, Q. and Debacker, B. J. (2024), “Assessment of Passive Solar Heating Systems’ Energy-Saving Potential across Varied Climatic Conditions – The Development of the Passive Solar Heating Indicator (PSHI)”, in Buildings, vol. 14, issue 5, article 1364, pp. 1-19. [Online] Available at: doi.org/10.3390/buildings14051364 [Accessed 12 September 2025].

Montero-Gutiérrez, P., Sánchez Ramos, J., Castro Medina, D., Palomo Amores, T., Guerrero Delgado, M. C. and Álvarez Domínguez, S. (2025), “Exploring a new approach to ancient Qanat techniques using earth-air and water-air heat exchangers for efficient natural cooling”, in Energy Conversion and Management, vol. 341, article 120066, pp. 1-21. [Online] Available at: doi.org/10.1016/j.enconman.2025.120066 [Accessed 12 September 2025].

Obuseh, E., Eyenubo, J., Alele, J., Okpare, A. and Oghogho, I. (2025), “A Systematic Review of Barriers to Renewable Energy Integration and Adoption”, in Journal of Asian Energy Studies, vol. 9, pp. 26-45. [Online] Available at: doi.org/10.24112/jaes.090002 [Accessed 17 October 2025].

Pourghorban, A. and Asoodeh, H. (2022), “The impacts of advanced glazing units on annual performance of the Trombe wall systems in cold climates”, in Sustainable Energy Technologies and Assessments, vol. 51, article 101983, pp. 1-13. [Online] Available at: doi.org/10.1016/j.seta.2022.101983 [Accessed 12 September 2025].

Rim, M., Sung, U.-J. and Kim, T. (2018), “Application of Thermal Labyrinth System to Reduce Heating and Cooling Energy Consumption”, in Energies, vol. 11, issue 10, articolo 2762, pp. 1-17. [Online] Available at: doi.org/10.3390/en11102762 [Accessed 12 September 2025].

Ritchie, H. (2024), “Air conditioning causes around 3% of greenhouse gas emissions – How will this change in the future?”, in Our World in Data, 29/07/24. [Online] Available at: ourworldindata.org/air-conditioning-causes-around-greenhouse-gas-emissions-will-change-future [Accessed 12 September 2025].

Rome Technopole (2024), Flagship Project 2 – Transizione energetica e transizione digitale nella rigenerazione urbana e nell’edilizia. [Online] Available at: rometechnopole.it/progetti-flagship-project-2/ [Accessed 12 September 2025].

Samiev, K. A. and Halimov, A. S. (2022), “Annual Thermal Performance of the Trombe Wall with Phase Change Heat Storage under Climate Conditions of Uzbekistan”, in Applied Solar Energy, vol. 58, issue 2, pp. 297-305. [Online] Available at: doi.org/10.3103/S0003701X22020189 [Accessed 12 September 2025].

Simões, N., Manaia, M. and Simões, I. (2021), “Energy performance of solar and Trombe walls in Mediterranean climates”, in Energy, vol. 234, article 121197, pp. 1-13. [Online] Available at: doi.org/10.1016/j.energy.2021.121197 [Accessed 12 September 2025].

Song, S.-Y., Song, J.-H. and Lim, J.-H. (2014), “Effectiveness of a thermal labyrinth ventilation system using geothermal energy – A case study of an educational facility in South Korea”, in Energy for Sustainable Development, vol. 23, pp. 150-164. [Online] Available at: doi.org/10.1016/j.esd.2014.07.008 [Accessed 12 September 2025].

Sornek, K., Papis-Frączek, K., Calise, F., Cappiello, F. L. and Vicidomini, M. (2023), “A Review of Experimental and Numerical Analyses of Solar Thermal Walls”, in Energies, vol. 16, issue 7, article 3102, pp. 1-25. [Online] Available at: doi.org/10.3390/en16073102 [Accessed 12 September 2025].

Tucci, F. (2021), Adaptive Design – Spazi solari e bioclimatici in Architettura | Solar and bioclimatic spaces in Architecture, Altralinea Editrice, Firenze.

Tucci, F. (2020a), Atlante dei sistemi tecnologici per l’Architettura bioclimatica – Ventilazione naturale in Architettura | Atlas of Technological Systems for Bioclimatic Architecture – Natural Ventilation in Architecture, Altralinea Editrice, Firenze.

Tucci, F. (2020b), Atlante dei sistemi tecnologici per ‘Architettura bioclimatica – Riscaldamento passivo in Architettura | Atlas of Technological Systems for Bioclimatic Architecture – Passive Heating in Architecture, Altralinea Editrice, Firenze.

Tucci, F. (2018), Costruire e Abitare Green – Approcci, Strategie, Sperimentazioni per una Progettazione Tecnologica Ambientale | Green Building and Dwelling – Approaches, Strategies, Experimentation for an Environmental Technological Design, Altralinea Editrice, Firenze.

Tucci, F. (2009), Tecnologia e Natura – Gli insegnamenti del mondo naturale per il progetto di architettura bioclimatica, Alinea Editrice, Firenze.

UNEP – United Nations Environment Programme (2023), Global Cooling Watch 2023 – Keeping it Chill – How to meet cooling demands while cutting emissions. [Online] Available at: wedocs.unep.org/20.500.11822/44243 [Accessed 12 September 2025].

UNI 8290-1:1981 + A122:1983, Residential building – Building Elements. Classification and Terminology. [Online] Available at: store.uni.com/en/uni-8290-1-1981-a122-1983 [Accessed 12 September 2025].

UNI 8289:1981, Building – Functional Requirements of Final Users – Classification. [Online] Available at: store.uni.com/en/uni-8289-1981 [Accessed 12 September 2025].

UNI EN 16798-1:2019, Energy performance of buildings – Ventilation for buildings – Part 1 – Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics – Module M1-6. [Online] Available at: store.uni.com/en/uni-en-16798-1-2019 [Accessed 12 September 2025].

UNI EN ISO 15265:2005, Ergonomics of the thermal environment – Risk assessment strategy for the prevention of stress or discomfort in thermal working conditions. [Online] Available at: store.uni.com/en/uni-en-iso-15265-2005 [Accessed 12 September 2025].

UNI EN ISO 13790:2008, Energy performance of buildings – Calculation of energy use for space heating and cooling. [Online] Available at: store.uni.com/en/uni-en-iso-13790-2008 [Accessed 12 September 2025].

United Nations Environment Programme and Global Alliance for Buildings and Construction (2025), Not just another brick in the wall – The solutions exist – Scaling them will build on progress and cut emissions fast – Global Status Report for Buildings and Construction 2024/2025. [Online] Available at: wedocs.unep.org/20.500.11822/47214 [Accessed 17 October 2025].

Vassiliades, C., Christos M., Olga-Eleni A., Barone G. and Vardopoulos, I. (2023), “Socio-Economic Barriers to Adopting Energy-Saving Bioclimatic Strategies in a Mediterranean Sustainable Real Estate Setting – A Quantitative Analysis of Resident Perspectives”, in Energies, vol. 16, issue 24, article 7952, pp. 1-18. [Online] Available at: doi.org/10.3390/en16247952 [Accessed 17 October 2025].

Volkova, A. (2024), Energy efficiency indicators for heat supply sector. [Online] Available at: odyssee-mure.eu/publications/policy-brief/european-heat-supply.pdf [Accessed 12 September 2025].

Wang, D., Hu, L., Du, H., Liu, Y., Huang, J., Xu, Y. and Liu, J. (2020), “Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls”, in Renewable and Sustainable Energy Reviews, vol. 124, article 109772, pp. 1-23. [Online] Available at: doi.org/10.1016/j.rser.2020.109772 [Accessed 12 September 2025].

Xiao, Y., Yang, Q., Fei, F., Li, K., Jiang, Y., Zhang, Y., Fukuda, H. and Ma, Q. (2024), “Review of Trombe wall technology – Trends in optimization”, in Renewable and Sustainable Energy Reviews, vol. 200, article 114503, pp. 1-16. [Online] Available at: doi.org/10.1016/j.rser.2024.114503 [Accessed 12 September 2025].

Xiong, J., Yao, R., Grimmond, S., Zhang, Q. and Li, B. (2019), “A hierarchical climatic zoning method for energy efficient building design applied in the region with diverse climate characteristics”, in Energy and Buildings, vol. 186, pp. 355-367. [Online] Available at: doi.org/10.1016/j.enbuild.2019.01.005 [Accessed 12 September 2025].

Zhang, T., Wang, H., Ding, J., Tang, S., Yuan, D. and Rao, Y. (2025), “Transient Simulation of the Thermal Performance of a Novel Phase Change Material Trombe Wall”, in Coatings, vol. 15, issue 3, articolo 303, pp. 1-13. [Online] Available at: doi.org/10.3390/coatings15030303 [Accessed 12 September 2025].

Zhou, S., Song, M., Shan, K., Zhang, L., You, B. and Razaqpur, A. G. (2024), “Heating and energy performances of a dynamic Trombe wall incorporating phase change materials under different operation modes”, in Journal of Building Engineering, vol. 95, article 1101201, pp. 1-23. [Online] Available at: doi.org/10.1016/j.jobe.2024.110201 [Accessed 12 September 2025].

The Recreation and Wellness Centre – RAW (2011) in San Francisco (California, USA), designed by LPA Design Studios (source: lpadesignstudios.com, 2025). AGATHÓN 18 | 2025

##submission.downloads##

Pubblicato

30-12-2025

Come citare

Tucci, F., Mitrik, K. e Montagner, L. (2025) «Muro di Trombe e labirinto termico – Strategie bioclimatiche per il clima mediterraneo», AGATHÓN | International Journal of Architecture Art and Design, 18, pagg. 250–263. doi: 10.69143/2464-9309/18142025.

Puoi leggere altri articoli dello stesso autore/i