Agricoltura urbana e architettura – L’acqua per ottimizzare la sinergia edificio-vegetazione

Autori

  • Valentina Dessì Politecnico di Milano (Italia)
  • Matteo Clementi Politecnico di Milano (Italia)
  • Erpinio Labrozzi Politecnico di Milano (Italia)
  • Filippo Oppimitti Libera Università di Bolzano (Italia)
  • Michele D’Ostuni Università di Bologna (Italia)
  • Chew B. Soh Singapore Institute of Technology (Singapore)
  • Szu C. Chien Singapore Institute of Technology (Singapore)
  • Barbara Ting W. Ang Singapore Institute of Technology (Singapore)

DOI:

https://doi.org/10.69143/2464-9309/18122025

Parole chiave:

agricoltura urbana, produzione a emissioni zero, metabolismo urbano sostenibile, agricoltura integrata negli edifici, gestione idrica circolare

Abstract

Il paper invita a riflettere su come le pratiche sostenibili fondate sul metabolismo urbano possano generare sinergie tra gli Obiettivi di Sviluppo Sostenibile (SDG), proponendo un approccio metodologico per l’integrazione architettonica dell’agricoltura urbana. Al centro pone l’acqua, per connettere abitanti, ambiente costruito e aree verdi, migliorando la resilienza urbana. La metodologia procede dall’analisi alla scala di quartiere a quella dell’isolato / blocco edilizio, per definire soluzioni di agricoltura integrata in edifici a emissioni zero con l’obiettivo di chiudere i cicli energetici e idrici e contribuire agli SDG 2, 6, 11 e 12.

 

Info sull'articolo

Ricevuto: 15/09/2025; Revisionato: 23/10/2025; Accettato: 25/10/2025

Downloads

I dati di download non sono ancora disponibili.

##plugins.generic.articleMetricsGraph.articlePageHeading##

Biografie autore

Valentina Dessì, Politecnico di Milano (Italia)

Professore Associato presso il Dipartimento DASTU. Si occupa di metodi e strumenti per la progettazione bioclimatica degli spazi pubblici, di soluzioni basate sulla natura per l’adattamento agli impatti dei cambiamenti climatici e di rigenerazione urbana sostenibile.
E-mail: valentina.dessi@polimi.it

Matteo Clementi, Politecnico di Milano (Italia)

Professore Associato in Tecnologia dell’Architettura e Progettazione Ambientale, svolge attività di ricerca su metodi e strumenti open source di supporto alla progettazione sostenibile a scala edilizia e urbana per lo sviluppo di scenari di autosufficienza locale orientati alla neutralità climatica.
E-mail: matteo.clementi@polimi.it

Erpinio Labrozzi, Politecnico di Milano (Italia)

Dottorando, svolge attività di ricerca sulla progettazione architettonica e urbana sostenibile, con particolare attenzione alle pratiche di sostenibilità ambientale e sociale.
E-mail: erpinio.labrozzi@polimi.it

Filippo Oppimitti, Libera Università di Bolzano (Italia)

PhD, è Assegnista di Ricerca e si occupa delle teorie e delle pratiche che indagano l’introduzione di XR e AI nello spazio domestico e dell’integrazione di architettura e agricoltura.
E-mail: filippo.oppimitti@polimi.it

Michele D’Ostuni, Università di Bologna (Italia)

Architetto e Ricercatore presso il DISTAL, è specializzato nella progettazione architettonica e spaziale con la trasformazione dei sistemi agroalimentari urbani.
E-mail: michele.dostuni@unibo.it

Chew B. Soh, Singapore Institute of Technology (Singapore)

Ingegnere, è Professore Associato e svolge attività di ricerca su semiconduttori composti, sulla sintesi di materiali per la conversione della luce e sull’innovazione tecnologica volta a promuovere la resilienza nei settori dell’energia e dell’alimentazione.
E-mail: chewbeng.soh@singaporetech.edu.sg

Szu C. Chien, Singapore Institute of Technology (Singapore)

Ingegnere e Professore Associato, svolge attività di ricerca su illuminazione centrata sull’uomo, sistemi di gestione BIM, urban farming e interazione uomo-macchina, nonché su progettazione e diagnostica di edifici ad alte prestazioni. Collabora con partner industriali e istituzionali a ricerche, diagnostica e simulazione.
E-mail: szucheng.chien@singaporetech.edu.sg

Barbara Ting W. Ang, Singapore Institute of Technology (Singapore)

Ingegnere chimico, è Ricercatrice. La sua ricerca si incentra sulla sintesi di materiali per la conversione della luce e sull’innovazione tecnologica volta a promuovere la resilienza nei settori dell’energia e dell’alimentazione.
E-mail: barbara.ang@singaporetech.edu.sg

Riferimenti bibliografici

Ahmadi, E., McLellan, B., Ogata, S., Mohammadi-Ivatloo, B. and Tezuka, T. (2020), “An Integrated Planning Framework for Sustainable Water and Energy Supply”, in Sustainability, vol. 12, issue 10, article 4295, pp. 1-37. [Online] Available at: doi.org/10.3390/SU12104295 [Accessed 17 October 2025].

Alcalde Sanz, L. and Man, B. (2014), Water reuse in Europe – Relevant guidelines, needs for and barriers to innovation – A Synoptic overview, Publications Office of the European Union, Luxembourg. [Online] Available at: data.europa.eu/doi/10.2788/29234 [Accessed 17 October 2025].

Ang, B. T. W., Fong, Y. M., Soh, C. B., Chien, S. C., An, H. and Soon Tay, R. H. (2024), “Passive Infrared-to-Visible-Light Upconversion Using NaYF4:Yb,Er Nanoparticle Films for Greenhouse Façades”, in ACS Applied Nano Materials, vol. 7, issue 16, pp. 18851-18860. [Online] Available at: pubs.acs.org/doi/10.1021/acsanm.4c02476 [Accessed 17 October 2025].

Armar-Klemesu M. (2000), “Urban agriculture and food security, nutrition and health”, in Bakker, N., Dubbeling, M., Guendel, S., Sabel Koschella, U. and De Zeeuw, H. (eds), Growing cities, growing food, urban agriculture on the policy agenda, Feldafing, pp. 99-118. [Online] Available at: cabidigitallibrary.org/doi/pdf/10.5555/20003032308 [Accessed 17 October 2025].

Basso, S., Bisiani, T., Martorana, P. and Venudo, A. (2023), “Vertical Farm – Dalle forme dell’agricoltura nuove architetture e città | Vertical Farm – New architectures and cities from the forms of agriculture”, in Agathón | International Journal of Architecture, Art and Design, vol. 13, pp. 141-152. [Online] Available at: doi.org/10.19229/2464-9309/13122023 [Accessed 17 October 2025].

Beisheim, M. and Weinlich, S. (2023), Germany and Namibia as Co-leads for the United Nations – Chances and challenges on the road to the 2024 UN Summit of the Future, SWP | Stiftung Wissenschaft und Politik, Berlin. [Online] Available at: doi.org/10.18449/2023C03 [Accessed 17 October 2025].

Bennich, T., Persson, Å., Beaussart, R., Allen, C. and Malekpour, S. (2023), “Recurring patterns of SDG interlinkages and how they can advance the 2030 Agenda”, in One Earth | A Cell Press Journal, vol. 6, issue 11, pp. 1465-1476. [Online] Available at: doi.org/10.1016/J.ONEEAR.2023.10.008 [Accessed 17 October 2025].

Carotti, L., Pistillo, A., Zauli, I., Meneghello, D., Martin, M., Pennisi, G., Gianquinto, G. and Orsini, F. (2023), “Improving water use efficiency in vertical farming – Effects of growing systems, far-red radiation and planting density on lettuce cultivation”, in Agricultural Water Management, vol. 285, article 108365, pp. 1-10. [Online] Available at: doi.org/10.1016/J.AGWAT.2023.108365 [Accessed 17 October 2025].

Chrysoulakis, N., De Castro, E. A. and Moors, E. J. (eds) (2014), Understanding Urban Metabolism – A Tool for Urban Planning. Routledge, Oxfordshire. [Online] Available at: doi.org/10.4324/9781315765846 108365 [Accessed 17 October 2025].

Clementi, M., Dessì, V., Podestà, G. M., Chien, S.-C., Ang, T. W. B. and Lucchi, E. (2024), “GIS-Based Digital Twin Model for Solar Radiation Mapping to Support Sustainable Urban Agriculture Design”, in Sustainability, vol. 6, issue 15, article 6590, pp. 1-24. [Online] Available at: doi.org/10.3390/su16156590 [Accessed 17 October 2025]

Clementi, M., Pereira Guimarães, M. and Dessì, V. (2024), “Mapping the climate in the urban fabric – The first step for farming the city”, in Territorio, vol. 108-109, pp. 107-117. [Online] Available at: torrossa.com/it/resources/an/6059624?digital=true [Accessed 17 October 2025].

D’Ostuni, M., Stanghellini, C., Boedijn, A., Zaffi, L. and Orsini, F. (2023), “Evaluating the impacts of nutrients recovery from urine wastewater in Building-Integrated Agriculture – A test case study in Amsterdam”, in Sustainable Cities and Society, vol. 91, article 104449, pp. 1-12. [Online] Available at: doi.org/10.1016/J.SCS.2023.104449 [Accessed 17 October 2025].

D’Ostuni, M., Zaffi, L., Appolloni, E. and Orsini, F. (2022), “Understanding the complexities of Building-Integrated Agriculture – Can food shape the future built environment?”, in Futures, vol. 144, article 103061, pp. 1-17. [Online] Available at: doi.org/10.1016/J.FUTURES.2022.103061 [Accessed 17 October 2025].

Deksissa, T., Trobman, H., Zendehdel, K. and Azam, H. (2021), “Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots”, in Sustainability, vol. 13, issue 15, article 8293, pp. 1-19. [Online] Available at: doi.org/10.3390/su13158293 [Accessed 17 October 2025].

Dessì, V. and Clementi, M. (2023), “Mapping Urban Water Balance to support the integrated design of water cycles in the peri-urban areas”, in Journal of Physics | Conference Series, vol. 2600, article 172005, pp. 1-6. [Online] Available at: doi.org/10.1088/1742-6596/2600/17/172005 [Accessed 17 October 2025].

Fader, M., Cranmer, C., Lawford, R. and Engel-Cox, J. (2018), “Toward an understanding of synergies and trade-offs between water, energy, and food SDG targets”, in Frontiers in Environmental Science, vol. 6, article 112, pp. 1-11. [Online] Available at: doi.org/10.3389/FENVS.2018.00112 [Accessed 17 October 2025].

FAO – Food and Agriculture Organization of the United Nations (2021), The state of the world’s land and water resources for food and agriculture – Systems at breaking point – Synthesis report 2021. [Online] Available at: doi.org/10.4060/cb7654en [Accessed 17 October 2025].

FAO – Food and Agriculture Organization of the United Nations (2019), FAO framework for the Urban Food Agenda – Leveraging sub-national and local government action to ensure sustainable food systems and improved nutrition. [Online] Available at: doi.org/10.4060/ca3151en [Accessed 17 October 2025].

Goh, M. L. W., Teo, M. R. J., Wei, J. L., Ang, B. T. W., Soh, C. B., Clementi, M. and Dessi, V. (2025), “Urban microclimate modeling for side-facade farming and agrivoltaic deployment in town estates”, in Journal of Ecoscience and Plant Revolution, vol 4, issue 1, pp. 1-10. [Online] Available at: doi.org/10.37357/1068/JEPR/4.1.01 [Accessed 17 October 2025].

Herzog, T., Battisti, A. and Tucci, F. (2012), “Sperimentazioni di housing sociale tra efficienza energetico-ambientale e basso costo | Experimentation on Social housing between energy environmental efficiency and low cost”, in Techne | Journal of Technology for Architecture and Environment, 4, pp. 343-354. [Online] Available at: doi.org/10.13128/Techne-11535 [Accessed 17 October 2025].

Holmes, D. E., Dang, Y. and Smith, J. A. (2019), “Nitrogen cycling during wastewater treatment”, in Advances in Applied Microbiology, vol. 106, pp. 113-192. [Online] Available at: doi.org/10.1016/bs.aambs.2018.10.003 [Accessed 17 October 2025].

Horvath, S.-M., Muhr, M. M., Kirchner, M., Toth, W., Germann, V., Hundscheid, L., Vacik, H., Scherz, M., Kreiner, H., Fehr, F., Borgwardt, F., Gühnemann, A., Becsi, B., Schneeberger, A. and Gratzer, G. (2022), “Handling a complex agenda – A review and assessment of methods to analyse SDG entity interactions”, in Environmental Science and Policy, vol. 131, pp. 160-176. [Online] Available at: doi.org/10.1016/J.ENVSCI.2022.01.021 [Accessed 17 October 2025].

Hung, P. and Peng, K. (2017), “Green-energy, water-autonomous greenhouse system – An alternative-technology approach towards sustainable smart-green vertical greening in smart cities”, in International Review for Spatial Planning and Sustainable Development, vol. 5, issue 1, pp. 55-70. [Online] Available at: doi.org/10.14246/irspsd.5.1_55 [Accessed 17 October 2025].

Iungman, T., Cirach, M., Marando, F., Pereira-Barboza, E., Khomenko, S., Masselot, P., Quijal-Zamorano, M., Mueller, N., Gasparrini, A., Urquiza, J., Heris, M., Thondoo, M. and Nieuwenhuijsen, M. (2023), “Cooling cities through urban green infrastructure – A health impact assessment of European cities”, in The Lancet, vol. 401, issue 10376, pp. 577-589. [Online] Available at: doi.org/10.1016/S0140-6736(22)02585-5 [Accessed 17 October 2025].

Kay, M. (ed.) (2022), Improving agricultural water use efficiency and productivity in the Middle East – Pressures, status, impacts and responses, Turkish Water Institute and SUEN, Istanbul. [Online] Available at: bluepeaceme.org/storage/publications/September2023/Fu7pgHvKUtvBlL 8v2zmF.pdf [Accessed 17 October 2025].

Lin, B. B., Philpott, S. M. and Jha, S. (2015) “The future of urban agriculture and biodiversity-ecosystem services – Challenges and next steps”, in Basic and Applied Ecology, vol. 16, issue 3, pp. 189-201. [Online] Available at: doi.org/10.1016/j.baae.2015.01.005 [Accessed 17 October 2025].

Magwaza, S. T., Magwaza, L. S., Odindo, A. O., Mashilo, J., Mditshwa, A. and Buckley, C. (2020), “Evaluating the feasibility of human excreta-derived material for the production of hydroponically grown tomato plants – Part I – Photosynthetic efficiency, leaf gas exchange and tissue mineral content”, in Agricultural Water Management, vol. 234, article 106114, pp. 1-12. [Online] Available at: doi.org/10.1016/j.agwat.2020.106114 [Accessed 17 October 2025].

Muñoz-Liesa, J., Royapoor, M., López-Capel, E., Cuerva, E., Rufí-Salís, M., Gassó-Domingo, S. and Josa, A. (2020), “Quantifying energy symbiosis of building-integrated agriculture in a Mediterranean rooftop greenhouse”, in Renewable Energy, vol. 156, pp. 696-709. [Online] Available at: doi.org/10.1016/j.renene.2020.04.098 [Accessed 17 October 2025].

Nicholls, E., Ely, A., Birkin, L., Basu, P. and Goulson, D. (2020), “The contribution of small‑scale food production in urban areas to the sustainable development goals – A review and case study”, in Sustainability Science, vol. 15, pp. 1585-1599. [Online] Available at: doi.org/10.1007/s11625-020-00792-z [Accessed 17 October 2025].

Payen, F. T., Evans, D. L., Falagán, N., Hardman, C. A., Kourmpetli, S., Liu, L., Marshall, R., Mead, B. R, and Davies, J. A. C. (2022), “How much food can we grow in urban areas? Food production and crop yields of urban agriculture – A meta-analysis”, in Earth’s Future, vol. 10, issue 8, article e2022EF002748, pp. 1-22. [Online] Available at: doi.org/10.1029/2022EF002748 [Accessed 17 October 2025].

Pradhan, P. (2023), “A threefold approach to rescue the 2030 Agenda from failing”, in National Science Review, vol. 10, issue 7, article nwad015, pp. 1-3. [Online] Available at: doi.org/10.1093/NSR/NWAD015 [Accessed 17 October 2025].

Rajapakse, J., Otoo, M. and Danso, G. (2023), “Progress in delivering SDG6 – Safe water and sanitation”, in Cambridge Prisms | Water, vol. 1, article 6, pp. 1-15. [Online] Available at: doi.org/10.1017/WAT.2023.5 [Accessed 17 October 2025].

Raman, R., Lathabai, H. H. and Nedungadi, P. (2024), “Sustainable development goal 12 and its synergies with other SDGs – Identification of key research contributions and policy insights”, in Discover Sustainability, vol. 5, article 150, pp. 1-26. [Online] Available at: doi.org/10.1007/S43621-024-00289-0 [Accessed 17 October 2025].

Reinberg, G. W. (2006), Architecture by Georg W. Reinberg, Alinea International, Firenze.

Requejo-Castro, D., Giné-Garriga, R. and Pérez-Foguet, A. (2020), “Data-driven Bayesian network modelling to explore the relationships between SDG 6 and the 2030 Agenda”, in Science of The Total Environment, vol. 710, article 136014, pp. 1-19. [Online] Available at: doi.org/10.1016/J.SCITOTENV.2019.136014 [Accessed 17 October 2025].

Specht, K., Siebert, R., Hartmann, I., Freisinger, U. B., Sawicka, M., Werner, A., Thomaier, S., Henckel, D., Walk, H. and Dierich, A. (2014), “Urban agriculture of the future – An overview of sustainability aspects of food production in and on buildings”, in Agriculture and Human Values | Journal of Agriculture, Food, and Human Values Society, vol. 31, pp. 33-51. [Online] Available at: doi.org/10.1007/S10460-013-9448-4 [Accessed 17 October 2025].

Susca, T., Gaffin, S. R. and Dell’Osso, G. R. (2011), “Positive effects of vegetation – Urban heat island and green roofs”, in Environmental Pollution, vol. 159, issues 8-9, pp. 2119-2126. [Online] Available at: doi.org/10.1016/j.envpol.2011.03.007 [Accessed 17 October 2025].

Susca, T., Zanghirella, F. and Del Fatto, V. (2023), “Building integrated vegetation effect on micro-climate conditions for urban heat island adaptation – Lesson learned from Turin and Rome case studies”, in Energy and Buildings, vol. 295, article 113233, pp. 1-17. [Online] Available at: doi.org/10.1016/j.enbuild.2023.113233 [Accessed 17 October 2025].

Tervahauta, T. H. (2014), Phosphate and organic fertiliser recovery from black water, Doctoral Thesis, Wageningen University, Netherlands. [Online] Available at: doi.org/10.18174/313616 [Accessed 17 October 2025].

Thomaier, S., Specht, K., Henckel, D., Dierich, A., Siebert, R., Freisinger, U. B. and Sawicka, M. (2015), “Farming in and on urban buildings – Present practice and specific novelties of Zero-Acreage Farming (ZFarming)”, in Renewable Agriculture and Food Systems, vol. 30, issue 1, pp. 43-54. [Online] Available at: doi.org/10.1017/S1742170514000143 [Accessed 17 October 2025].

Tucci, F., Altamura, P. and Pani, M. M. (2023), “Modulare le dinamiche urbane in chiave climatica – Spazi intermedi e neutralità climatica | Modulating urban dynamics from a climate perspective – In-between spaces and climate neutrality”, in Agathón | International Journal of Architecture, Art and Design, vol. 14, pp. 204-215. [Online] Available at: doi.org/10.19229/2464-9309/14172023 [Accessed 17 October 2025].

UN – United Nations (2015), Transforming our world – The 2030 Agenda for Sustainable Development – A/RES/70/1. [Online] Available at: sustainabledevelopment.un.org/content/documents/21252030%20Agenda %20for%20Sustainable%20Development%20web.pdf [Accessed 17 October 2025].

Vacanti, A. and Leonardi, C. (2024), “Tecnologia, energia e tempi – Percorsi sperimentali per il design di tecnologie appropriate | Technology, Energy, and Time – Experimental paths for the design of appropriate technology”, in Agathón | International Journal of Architecture, Art and Design, vol. 15, pp. 316-323. [Online] Available at: doi.org/10.19229/2464-9309/15262024 [Accessed 17 October 2025].

Valente, R., Bosco, R., Giacobbe, S. and Losco, S. (2022), “Il progetto di infrastrutture verdi per le acque piovane – Note di metodo da un caso studio | Green stormwater infrastructures research through design – Method notes from a case study”, in Agathón | International Journal of Architecture, Art and Design, vol. 11, pp. 192-201. [Online] Available at: doi.org/10.19229/2464-9309/11172022 [Accessed 17 October 2025].

Valverde, J.-M. and Avilés-Palacios, C. (2021), “Circular Economy as a Catalyst for Progress towards the Sustainable Development Goals – A Positive Relationship between Two Self-Sufficient Variables”, in Sustainability, vol. 13, issue 22, article 12652, pp. 1-13. MDPI [Online] Available at: doi.org/10.3390/SU132212652 [Accessed 17 October 2025].

Van Puijenbroek, P. J. T. M., Beusen, A. H. W., Bouwman, A. F., Ayeri, T., Strokal, M. and Hofstra, N. (2023), “Quantifying future sanitation scenarios and progress towards SDG targets in the shared socioeconomic pathways”, in Journal of Environmental Management, vol. 346, article 118921, pp. 1-14. [Online] Available at: doi.org/10.1016/J.JENVMAN.2023.118921 [Accessed 17 October 2025].

Zaffi, L. and D’Ostuni, M. (2020), “Città metaboliche del futuro – Fra Agricoltura e Architettura | Metabolic cities of the future – Between Agriculture and Architecture”, in Agathón | International Journal of Architecture, Art and Design, vol. 8, pp. 82-93. [Online] Available at: doi.org/10.19229/2464-9309/882020 [Accessed 17 October 2025].

Žuvela-Aloise, M., Koch, R., Buchholz, S. and Früh, B. (2016), “Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna”, in Climatic Change, vol. 135, pp. 425-438. [Online] Available at: doi.org/10.1007/s10584-016-1596-2 [Accessed 17 October 2025].

Template of a best-practice sheet, part of the BIZE_UrFarm guidelines, helpful in guiding BIA interventions (credit: the Authors, 2025). AGATHÓN 18 | 2025

##submission.downloads##

Pubblicato

30-12-2025

Come citare

Dessì, V., Clementi, M., Labrozzi, E., Oppimitti, F., D’Ostuni, M., Soh, C. B., Chien, S. C. e Ang, B. T. W. (2025) «Agricoltura urbana e architettura – L’acqua per ottimizzare la sinergia edificio-vegetazione», AGATHÓN | International Journal of Architecture Art and Design, 18, pagg. 224–237. doi: 10.69143/2464-9309/18122025.