Design sull’esperienza dell’utente e sostenibilità degli oggetti con intelligenza artificiale
DOI:
https://doi.org/10.19229/2464-9309/13222023Parole chiave:
esperienza d’uso, design, sostenibilità, intelligenza artificiale, internet delle coseAbstract
Gli oggetti con intelligenza artificiale fanno ormai parte integrante della vita quotidiana di un numero sempre maggiore di utenti generando indubbi benefici ma anche potenziali criticità derivanti dal loro impatto ambientale. Il paper descrive questi oggetti e l’ecosistema che creano, presentando un modello interpretativo in cui vengono analizzate le tre principali componenti: fisica, digitale e d’uso. Riferendosi alla ‘sostenibilità’ il Design generalmente analizza gli impatti ambientali legati alla componente fisica, mentre l’Ingegneria si occupa della valutazione degli impatti della componente digitale; queste analisi sono solitamente dissociate e non coprono gli impatti legati all’uso. L’approccio che si presenta propone di integrare le diverse metodologie per far emergere gli impatti legati all’esperienza d’uso per generare maggiore consapevolezza già nella fase progettuale.
Info sull'articolo
Ricevuto: 04/04/2023; Revisionato: 02/05/2023; Accettato: 09/05/2023
Downloads
##plugins.generic.articleMetricsGraph.articlePageHeading##
Riferimenti bibliografici
Abramovici, M. (2019), “Smart products”, in Chatti, S., Laperrière, L., Reinhart, G. and Tolio, T. (eds), CIRP Encyclopedia of Production Engineering, Springer Berlin, Heidelberg. [Online] Available at: doi.org/10.1007/978-3-662-53120-4_16785 [Accessed 25 March 2023].
Adaji, I. and Adisa, M. (2022), “A Review of the Use of Persuasive Technologies to Influence Sustainable Behaviour”, in Bellogin, A., Boratto, L., Santos, O. (eds), UMAP ’22 Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, Association for Computing Machinery, New York, pp. 317-325. [Online] Available at: doi.org/10.1145/3511047.3537653 [Accessed 25 March 2023].
Anthony, L. F. W., Kanding, B. and Selvan, R. (2020), “Carbontracker – Tracking and Predicting the Carbon Footprint of Training Deep Learning Models”, presented at the ICML Workshop on Challenges in Deploying and Monitoring Machine Learning Systems, pp. 1-11. [Online] Available at: doi.org/10.48550/arXiv.2007.03051 [Accessed 25 March 2023].
Ashri, R. (2020), The AI-Powered Workplace – How Artificial Intelligence, Data, and Messaging Platforms Are Defining the Future of Work, Apress, Berkeley (CA). [Online] Available at: doi.org/10.1007/978-1-4842-5476-9 [Accessed 25 March 2023].
Bannour, N., Ghannay, S., Névéol, A. and Ligozat, A. L. (2021), “Evaluating the carbon footprint of NLP methods – A survey and analysis of existing tools”, in Nafise, S., Moosavi, I. and Gurevych, A. (eds), Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing, Association for Computational Linguistics, pp. 11-21. [Online] Available at: doi.org/10.18653/v1/2021.sustainlp-1.2 [Accessed 25 March 2023].
Bertoni, M. (2017), “Introducing sustainability in value models to support design decision making – A systematic review”, in Sustainability, vol. 9, issue 6, article 994, pp. 1-31. [Online] Available at: doi.org/10.3390/su9060994 [Accessed 25 March 2023].
Bracquené, E., De Bock, Y. and Duflou, J. (2020), “Sustainability impact assessment of an intelligent control system for residential heating”, in Procedia CIRP, vol. 90, pp. 232-237. [Online] Available at: doi.org/10.1016/j.procir.2020.02.007 [Accessed 25 March 2023].
Braungart, M., McDonough, W. and Bollinger, A. (2007), “Cradle-to-cradle design – Creating healthy emissions – A strategy for eco-effective product and system design”, in Journal of Cleaner Production, vol. 15, issues 13-14, pp. 1337-1348. [Online] Available at: doi.org/10.1016/j.jclepro.2006.08.003 [Accessed 25 March 2023].
Budennyy, S., Lazarev, V., Zakharenko, N., Korovin, A., Plosskaya, O., Dimitrov, D., Akhripkin, V. S., Pavlov, I. V., Oseledets, I. V., Barsola, I. S., Egorov, I. V., Kosterina, A. A. and Zhukov, L. E. (2022), “eco2AI – Carbon emissions tracking of machine learning models as the first step towards sustainable AI”, in Doklady Mathematics, vol. 106, pp. 118-128. [Online] Available at: doi.org/10.1134/S1064562422060230 [Accessed 25 March 2023].
Carella, G., Arquilla, V., Zurlo, F. and Tamburello, M. C. (2019), “Phygital experiences design”, in DIID | Disegno Industriale Industrial Design, vol. 67, pp. 128-135. [Online] Available at: re.public.polimi.it/handle/11311/1138184 [Accessed 25 March 2023].
Chapman, J. (2009), “Design for (emotional) durability”, in Design Issues, vol. 25, issue 4, pp. 29-35. [Online] Available at: doi.org/10.1162/desi.2009.25.4.29 [Accessed 25 March 2023].
Charter, M. and Tischner, U. (2001), Sustainable Solutions – Developing Products and Services for the Future, Routledge London. [Online] Available at: doi.org/10.4324/9781351282482 [Accessed 25 March 2023].
Cialdini, R. B. (2009), Influence – Science and practice, Pearson Education, Boston.
Cooper, T. (2004), “Inadequate life? Evidence of consumer attitudes to product obsolescence”, in Journal of Consumer Policy, vol. 27, issue 4, pp. 421-449. [Online] Available at: doi.org/10.1007/s10603-004-2284-6 [Accessed 25 March 2023].
Coroamă, V. C., Bergmark, P., Höjer, M. and Malmodin, J. (2020), “A methodology for assessing the environmental effects induced by ICT services – Part 1 – Single services”, in Chitchyan, R. and Schien, D. (eds), Proceedings of the 7th International Conference on ICT for Sustainability, Association for Computing Machinery, New York, pp. 36-45. [Online] Available at: doi.org/10.1145/3401335.3401716 [Accessed 25 March 2023].
Crawford, K. and Joler, V. (2018), Anatomy of an AI System – The Amazon Echo as an anatomical map of human labor, data and planetary resource, Share Lab and AI Now Institute. [Online] Available at: anatomyof.ai/img/ai-anatomy-publication.pdf [Accessed 25 March 2023].
Epifani, S. (2020), Sostenibilità digitale – Perché la sostenibilità non può fare a meno della transizione digitale, Digital Transformation Institute, Roma. [Online] Available at: attiviamoenergiepositive.it/wp-content/uploads/2020/07/EstrattoPerIlSitoRidotto.pdf [Accessed 25 March 2023].
Fogg, B. J. (2002), “Persuasive technology – Using computers to change what we think and do”, in Ubiquity, vol. 2002, issue December, article 5, pp. 89-120. [Online] Available at: doi.org/10.1145/764008.763957 [Accessed 25 March 2023].
Greengard, S. (2015), The Internet of Things, MIT Press, Cambridge (MA).
Gupta, U., Kim, Y. G., Lee, S., Tse, J., Lee, H.-H. S., Wei, G. Y., Brooks, D. and Wu, C.-J. (2022), “Chasing carbon – The elusive environmental footprint of computing”, in IEEE Micro, vol. 42, issue 4, pp. 37-47. [Online] Available at: doi.org/10.1109/MM.2022.3163226 [Accessed 25 March 2023].
Gutiérrez, C., Garbajosa, J., Diaz, J. and Yagüe, A. (2013), “Providing a Consensus Definition for the Term Smart Product”, in 2013 20th IEEE International Conference and Workshops on Engineering of Computer Based Systems (ECBS), IEEE, pp. 203-211. [Online] Available at: doi.org/10.1109/ECBS.2013.26 [Accessed 25 March 2023].
Hassenzahl, M., Burmester, M. and Koller, F. (2021), “User Experience Is All There Is – Twenty Years of Designing Positive Experiences and Meaningful Technology”, in i-com, vol. 20, issue 3, pp. 197-213. [Online] Available at: doi.org/10.1515/icom-2021-0034 [Accessed 25 March 2023].
Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D. and Pineau, J. (2020), “Towards the systematic reporting of the energy and carbon footprints of machine learning”, in The Journal of Machine Learning Research, vol. 21, issue 1, article 248, pp.10039-10081. [Online] Available at: dl.acm.org/doi/abs/10.5555/3455716.3455964 [Accessed 25 March 2023].
Hermann, M., Pentek, T. and Otto, B. (2016), “Design Principles for Industrie 4.0 Scenarios”, in 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa (US), pp. 3928-3937. [Online] Available at: doi.org/10.1109/HICSS.2016.488 [Accessed 25 March 2023].
Horner, N. C., Shehabi, A. and Azevedo, I. L. (2016), “Known unknowns – Indirect energy effects of information and communication technology”, in Environmental Research Letters, vol. 11, issue 10, article 103001, pp. 1-20. [Online] Available at: doi.org/10.1088/1748-9326/11/10/103001 [Accessed 25 March 2023].
Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F. and Rolnick, D. (2022), “Aligning artificial intelligence with climate change mitigation”, in Nature Climate Change, vol. 12, issue 6, pp. 518-527. [Online] Available at: doi.org/10.1038/s41558-022-01377-7 [Accessed 25 March 2023].
Kärkkäinen, M., Holmström, J., Främling, K., and Artto, K. (2003), “Intelligent products – A step towards a more effective project delivery chain”, in Computers in industry, vol. 50, issue 2, pp. 141-151. [Online] Available at: doi.org/10.1016/S0166-3615(02)00116-1 [Accessed 25 March 2023].
Lacoste, A., Luccioni, A., Schmidt, V. and Dandres, T. (2019), “Quantifying the Carbon Emissions of Machine Learning”, in arXiv.org. [Online] Available at: doi.org/10.48550/arXiv.1910.09700 [Accessed 25 March 2023].
Ligozat, A. L. and Luccioni, S. (2021), A Practical Guide to Quantifying Carbon Emissions for Machine Learning Researchers and Practitioners, Research Report. [Online] Available at: hal.science/hal-03376391/ [Accessed 25 March 2023].
Ligozat, A. L., Lefèvre, J., Bugeau, A. and Combaz, J. (2022), “Unraveling the Hidden Environmental Impacts of AI Solutions for Environment Life Cycle Assessment of AI Solutions”, in Sustainability, vol. 14, issue 9, article 5172, pp. 1-14. [Online] Available at: doi.org/10.3390/su14095172 [Accessed 25 March 2023].
Maass, W. and Janzen, S. (2007), “Dynamic Product Interfaces – A Key Element for Ambient Shopping Environments”, in Markus, M. L. (ed.), 20th Bled eConference in eMergence – Merging and Emerging Technologies, Processes, and Institutions – Bled, Slovenia, Faculty of Organizational Sciences, pp. 457-470. [Online] Available at: alexandria.unisg.ch/36765 [Accessed 25 March 2023].
Maeda, J. (2019), How to Speak Machine – Computational Thinking for the Rest of Us, Pinguin Random House, New York.
McGovern, G. (2020), World Wide Waste – How Digital Is Killing Our Planet – And What We Can Do About It, Silver Beach.
Meyer, G. G., Främling, K. and Holmström, J. (2009), “Intelligent products – A survey”, in Computers in Industry, vol. 60, issue 3, pp. 137-148. [Online] Available at: doi.org/10.1016/j.compind.2008.12.005 [Accessed 25 March 2023].
Midden, C. and Ham, J. (2018), “Persuasive Technology to Promote Pro-Environmental Behaviour”, in Steg, L. and de Groot, J. (eds), Environmental psychology – An introduction, Wiley Online Library, pp. 283-294. [Online] Available at: doi.org/10.1002/9781119241072.ch28 [Accessed 25 March 2023].
Midden, C. J. H., Kaiser, F. G. and McCalley, L. T. (2007), “Technology’s Four Roles in Understanding Individuals’ Conservation of Natural Resources”, in Journal of Social Issues, vol. 63, issue 1, pp. 155-174. [Online] Available at: doi.org/10.1111/j.1540-4560.2007.00501.x [Accessed 25 March 2023].
Mugge, R. (2007), Product Attachment, PhD Thesis, Technische Universiteit of Delft, the Netherlands. [Online] Available at: resolver.tudelft.nl/uuid:0a7cef79-cb04-4344-abb1-cff24e3c3a78 [Accessed 25 March 2023].
Nishikawa-Pacher, A. (2022), “Research Questions with PICO – A Universal Mnemoni”, in Publications, vol. 10, issue 3, article 21, pp. 1-10. [Online] Available at: doi.org/10.3390/publications10030021 [Accessed 25 March 2023].
Oinas-Kukkonen, H. and Harjumaa, M. (2009), “Persuasive systems design – Key issues, process model, and system features”, in Communications of the Association for Information Systems, vol. 24, article 28, pp. 485-500. [Online] Available at: doi.org/10.17705/1CAIS.02428 [Accessed 25 March 2023].
Pirson, T. and Bol, D. (2021), “Assessing the embodied carbon footprint of IoT edge devices with a bottom-up life-cycle approach”, in Journal of Cleaner Production, vol. 322, article 128966, pp. 1-13. [Online] Available at: doi.org/10.1016/j.jclepro.2021.128966 [Accessed 25 March 2023].
Pohl, J., Frick, V., Finkbeiner, M. and Santarius, T. (2022), “Assessing the environmental performance of ICT-based services – Does user behaviour make all the difference?”, in Sustainable Production and Consumption, vol. 31, pp. 828-838. [Online] Available at: doi.org/10.1016/j.spc.2022.04.003 [Accessed 25 March 2023].
Pohl, J., Hilty, L. M. and Finkbeiner, M. (2019), “How LCA contributes to the environmental assessment of higher order effects of ICT application – A review of different approaches”, in Journal of cleaner production, vol. 219, pp. 698-712. [Online] Available at: doi.org/10.1016/j.jclepro.2019.02.018 [Accessed 25 March 2023].
Ranganathan, P. and Aggarwal, R. (2020), “Study designs – Part 7 – Systematic reviews”, in Perspectives in Clinical Research, vol. 11, issue 2, pp. 97-100. [Online] Available at: pubmed.ncbi.nlm.nih.gov/32670836/ [Accessed 25 March 2023].
Rizwan, A., Rasheed, R., Javed, H., Farid, Q. and Ahmad, S. R. (2022), “Environmental sustainability and life cycle cost analysis of smart versus conventional energy meters in developing countries”, in Sustainable Materials and Technologies, vol. 33, pp. 2-12. [Online] Available at: doi.org/10.1016/j.susmat.2022.e00464 [Accessed 25 March 2023].
Rowland, C., Goodman, E., Charlier, M., Light, A. and Lui, A. (2015), Designing connected products – UX for the consumer Internet of Things, O’Reilly Media. [Online] Available at: dl.acm.org/doi/abs/10.5555/2891121 [Accessed 25 March 2023].
Shehabi, A. (2017), “Data Clouds and the Environment”, in Egenhoefer, R. B. (ed.), Routledge Handbook of Sustainable Design, Routledge, London, pp. 170-178. [Online] Available at: doi.org/10.4324/9781315625508 [Accessed 25 March 2023].
Stermieri, L., Kober, T., Schmidt, T. J., McKenna, R. and Panos, E. (2023), “Quantifying the implications of behavioral changes induced by digitalization on energy transition – A systematic review of methodological approaches”, in Energy Research & Social Science, vol. 97, article 102961, pp. 1-19. [Online] Available at: doi.org/10.1016/j.erss.2023.102961 [Accessed 25 March 2023].
Tukker, A. and Tischner, U. (2006), “Product-services as a research field – Past, present and future – Reflections from a decade of research”, in Journal of Cleaner Production, vol. 14, issue 17, pp. 1552-1556. [Online] Available at: doi.org/10.1016/j.jclepro.2006.01.022 [Accessed 25 March 2023].
Turovsky, B. (2016), “Ten years of Google Translate”, in The Keyword, 28/04/2016. [Online] Available at: blog.google/products/translate/ten-years-of-google-translate [Accessed 25 March 2023].
Vailshery, L. S. (2022), “Number of IoT connected devices worldwide 2019-2021, with forecasts to 2030”, in Statista, 22/11/2022. [Online] Available at: statista.com/statistics/1183457/iot-connected-devices-worldwide [Accessed 25 March 2023].
van Wynsberghe, A. (2021), “Sustainable AI – AI for sustainability and the sustainability of AI”, in AI and Ethics, vol. 1, issue 3, pp. 213-218. [Online] Available at: doi.org/10.1007/s43681-021-00043-6 [Accessed 25 March 2023].
Vezzoli, C. (2007), System design for sustainability – Theory, methods and tools for a sustainable ‘satisfaction-system’ design, Maggioli Editore, Santarcangelo di Romagna (RM).
Vezzoli, C., Delfino, E. and Ambole, L. A. (2014), “System Design for Sustainable Energy for all – A new challenging role for design to foster sustainable development”, in FormAkademisk, vol. 7, issue 3, pp. 1-27. [Online] Available at: doi.org/10.7577/formakademisk.791 [Accessed 25 March 2023].
Vezzoli, C., Garcia Parra, B. and Kohtala, C. (eds) (2021), Designing Sustainability for All – The Design of Sustainable Product-Service Systems Applied to Distributed Economies, Springer Nature, Milano. [Online] Available at: doi.org/10.1007/978-3-030-66300-1 [Accessed 25 March 2023].
Vezzoli, C., Macrì, L. and Takacs, B. (2022), System Design for Sustainability in Practice, Maggioli Editore, Santarcangelo di Romagna (RM).
Vezzoli, C. and Manzini, E. (2008), “Review – Design for sustainable consumption and production systems”, in Tukker, A., Charter, M., Vezzoli, C., Stø, E. and Andersen, M. M. (eds), System Innovation for Sustainability 1 – Perspectives on Radical Changes to Sustainable Consumption and Production, Routledge, London, Chapter 28, pp. 1-21. [Online] Available at: doi.org/10.4324/9781351280204 [Accessed 25 March 2023].
Vitali, I., Paracolli, A. and Arquilla, V. (2022), “The role of design in the era of conversational interfaces”, in Spallazzo, D. and Sciannamé, M. (eds), Embedding Intelligence – Desiglerly reflections on AI-infused Products, FrancoAngeli, Milano, pp. 77-86. [Online] Available at: researchgate.net/publication/363335630_EMBEDDING_INTELLIGENCE_ Designerly_ reflections_on_AI-infused_products [Accessed 25 March 2023].
Wohlschlager, D., Neitz-Regett, A. and Lanzinger, B. (2021), “Environmental Assessment of Digital Infrastructure in Decentralized Smart Grids”, in 2021 IEEE 9th International Conference on Smart Energy Grid Engineering (SEGE), IEEE, pp. 13-18. [Online] Available at: doi.org/10.1109/SEGE52446.2021.9535061 [Accessed 25 March 2023].
Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K. et alii (2022), “Sustainable AI – Environmental implications, challenges and opportunities”, in Marculescu, D., Chi, Y., and Wu, C. (eds), Proceedings of Machine Learning and Systems, vol. 4, pp. 795-813. [Online] Available at: doi.org/10.48550/arXiv.2111.00364 [Accessed 25 March 2023].
Zaffagnini, T. and Morganti, L. (2022), “Data-driven LCA per l’innovazione industriale green delle facciate continue customizzate | Data-driven LCA for green industrial innovation of custom curtain walls”, in Agathón | International Journal of Architecture, Art and Design, vol. 12, pp. 94-105. [Online] Available at: doi.org/10.19229/2464-9309/1292022 [Accessed 25 March 2023].
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Categorie
Licenza
Copyright (c) 2023 Venanzio Arquilla, Alice Paracolli
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.
AGATHÓN è pubblicata sotto la licenza Creative Commons Attribution License 4.0 (CC-BY).
License scheme | Legal code
Questa licenza consente a chiunque di:
Condividere: riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare questo materiale con qualsiasi mezzo e formato.
Modificare: remixare, trasformare il materiale e basarti su di esso per le tue opere per qualsiasi fine, anche commerciale.
Alle seguenti condizioni
Attribuzione: si deve riconoscere una menzione di paternità adeguata, fornire un link alla licenza e indicare se sono state effettuate delle modifiche; si può fare ciò in qualsiasi maniera ragionevole possibile, ma non con modalità tali da suggerire che il licenziante avalli l'utilizzatore o l'utilizzo del suo materiale.
Divieto di restrizioni aggiuntive: non si possono applicare termini legali o misure tecnologiche che impongano ad altri soggetti dei vincoli giuridici su quanto la licenza consente di fare.
Note
Non si è tenuti a rispettare i termini della licenza per quelle componenti del materiale che siano in pubblico dominio o nei casi in cui il nuovo utilizzo sia consentito da una eccezione o limitazione prevista dalla legge.
Non sono fornite garanzie. La licenza può non conferire tutte le autorizzazioni necessarie per l'utilizzo che ci si prefigge. Ad esempio, diritti di terzi come i diritti all'immagine, alla riservatezza e i diritti morali potrebbero restringere gli usi del materiale.