Fibre naturali e circolarità in architettura – Sostenibilità ambientale, economica e sociale

Autori

  • Francesca Thiébat Politecnico di Torino (Italia)
  • Alice Masoero Politecnico di Torino (Italia)
  • Fiamma Morselli Politecnico di Torino (Italia)
  • Elena Fregonara Politecnico di Torino (Italia)
  • Chiara Senatore Politecnico di Torino (Italia)
  • Mónica A. Muñoz Veloza Politecnico di Torino (Italia)
  • Roberto Giordano Politecnico di Torino (Italia)

DOI:

https://doi.org/10.69143/2464-9309/18192025

Parole chiave:

fibre naturali, architettura sostenibile, valutazione del ciclo vita, analisi dei costi del ciclo vita, valutazione del ciclo vita sociale

Abstract

Nel quadro di riferimento nazionale e internazionale le fibre vegetali presentano notevoli potenzialità di integrazione nel settore edilizio. L’adozione di materiali a base biologica si allinea agli SDG dell’Agenda 2030, in quanto incide sul consumo di risorse idriche, sull’energia e sul carbonio incorporati e sulla promozione di filiere sostenibili. Una review sistematica esamina l’interazione tra due settori economici strategici, quello agricolo e quello delle costruzioni, con lo scopo di individuare potenzialità e limiti nel raggiungimento degli obiettivi di sostenibilità. I risultati evidenziano che la sostenibilità ambientale delle fibre naturali nel settore delle costruzioni è un tema ampiamente presente in letteratura e sottolineano la necessità di promuovere l’integrazione tra strumenti di valutazione del ciclo vita per coniugare qualità ambientale, responsabilità sociale e impatto economico, contribuendo a un modello produttivo coerente con l’SDG 8.

 

Info sull'articolo

Ricevuto: 11/09/2025; Revisionato: 22/10/2025; Accettato: 23/10/2025

Downloads

I dati di download non sono ancora disponibili.

##plugins.generic.articleMetricsGraph.articlePageHeading##

Biografie autore

Francesca Thiébat, Politecnico di Torino (Italia)

Architetto e PhD, è Professoressa Associata di Progettazione Tecnologica e Ambientale dell’Architettura. Svolge attività di ricerca e didattica nell’ambito dell’architettura sostenibile e circolare, dell’abitare collettivo, dell’innovazione tecnologica e della valutazione di aspetti economico-ambientali nel ciclo di vita degli edifici.
E-mail: francesca.thiebat@polito.it

Alice Masoero, Politecnico di Torino (Italia)

Architetto, svolge attività di ricerca presso il Dipartimento di Architettura e Design (DAD) nell’ambito della sostenibilità ambientale applicata all’architettura e al design, con esperienza nella valutazione ambientale tramite l’approccio Life Cycle Assessment.
E-mail: alice.masoero@polito.it

Fiamma Morselli, Politecnico di Torino (Italia)

PhD in Design e Tecnologia – Persone, Ambiente, Sistemi, svolge attività di ricerca nell’ambito della progettazione e costruzione dell’architettura sostenibile con specifico riferimento allo studio e all’impiego di materiali da costruzione biogenici e a base biologica.
E-mail: fiamma.morselli@polito.it

Elena Fregonara, Politecnico di Torino (Italia)

PhD, è Professore Ordinario di Estimo e Valutazione. Svolge attività didattica e di ricerca scientifica nell’ambito della valutazione della fattibilità finanziaria degli investimenti immobiliari, della sostenibilità economica dei progetti nel ciclo di vita e dell’analisi del mercato immobiliare.
E-mail: elena.fregonara@polito.it

Chiara Senatore, Politecnico di Torino (Italia)

Architetto e PhD in Design e Tecnologia – Persone, Ambiente, Sistemi, svolge attività di ricerca sull’applicazione integrata degli approcci basati sul Life Cycle Thinking e in particolare sullo strumento LCC per la valutazione della sostenibilità economica.
E-mail: chiara.senatore@polito.it

Mónica A. Muñoz Veloza, Politecnico di Torino (Italia)

Architetto e PhD, è Assegnista di Ricerca post-doc presso il Dipartimento di Architettura e Design (DAD). La sua attività si concentra sulla progettazione tecnologica e ambientale dell’architettura, sul riuso di risorse, sulla riqualificazione di contesti fragili e sulla valutazione della sostenibilità, promuovendo il design circolare.
E-mail: monica.munozveloza@polito.it

Roberto Giordano, Politecnico di Torino (Italia)

Architetto e PhD, è Professore Ordinario presso il Dipartimento di Architettura e Design, con 25 anni di esperienza su metodi e strumenti di valutazione del ciclo vita dei prodotti e processi edilizi. È Responsabile Scientifico locale del progetto europeo ‘Indicate’, dedicato alla valutazione dell’impronta di carbonio degli edifici secondo la direttiva EPBD IV.
E-mail: roberto.giordano@polito.it

Riferimenti bibliografici

Alderkamp, L. M., Klootwijk, C. W., Schut, A. G. T., van der Linden, A., van Middelaar, C. E. and Taube, F. (2025), “Integrating crop and dairy production systems – Exploring different strategies to achieve environmental targets”, in Science of The Total Environment, vol. 958, article 177990, pp. 1-12. [Online] Available at: doi.org/10.1016/j.scitotenv.2024.177990 [Accessed 30 September 2025].

Araujo, A., da Silva, N., Sá, T., Caldas, L. and Toledo Filho, R. (2022), “Potential of Earth-Based Bamboo Bio-Concrete in the Search for Circular and Net-Zero Carbon Solutions to Construction Industry”, in IOP Conference Series | Earth and Environmental Science, vol. 1122, issue 1, article 012043, pp. 1-9. [Online] Available at: doi.org/10.1088/1755-1315/1122/1/012043 [Accessed 30 September 2025].

Arias, A., Torres, E., García-Zamora, J. L., Pacheco-Aguirre, F. M., Feijoo, G. and Moreira, M. T. (2024), “Environmental prospective of valorizing corn processing effluent to produce ferulic acid grafted chitosan polymer”, in Journal of Environmental Management, vol. 360, article 121210, pp. 1-8. [Online] Available at: doi.org/10.1016/j.jenvman.2024.121210 [Accessed 30 September 2025].

Aversa, P., Daniotti, B., Dotelli, G., Marzo, A., Tripepi, C., Sabbadini, S., Lauriola, P. and Luprano, V. A. M. (2019), “Thermo-hygrometric behavior of hempcrete walls for sustainable building construction in the Mediterranean area”, in IOP Conference Series | Earth and Environmental Science, vol. 296, issue 1, article 012020, pp. 1-12. [Online] Available at: doi.org/10.1088/1755-1315/296/1/012020 [Accessed 30 September 2025].

Babenko, M., Klitou, T., Klumbyte, E. and Fokaides, P. A. (2025), “Environmental assessment of mycelium based straw insulation composite – A sustainability analysis at building material level”, in Case Studies in Construction Materials, vol. 22, article e04572, pp. 1-11. [Online] Available at: doi.org/10.1016/j.cscm.2025.e04572 [Accessed 30 September 2025].

Backes, J. G. and Traverso, M. (2022), “Life cycle sustainability assessment as a metrics towards SDGs Agenda 2030”, in Current Opinion in Green and Sustainable Chemistry, vol. 38, article 100683, pp. 1-7. [Online] Available at: doi.org/10.1016/j.cogsc.2022.100683 [Accessed 30 September 2025].

Bartocci, P., Zampilli, M., Liberti, F., Pistolesi, V., Massoli, S., Bidini, G. and Fantozzi, F. (2020), “LCA analysis of food waste co-digestion”, in Science of The Total Environment, vol. 709, article 136187, pp. 1-12. [Online] Available at: doi.org/10.1016/j.scitotenv.2019.136187 [Accessed 30 September 2025].

Belaud, J.-P., Prioux, N., Vialle, C. and Sablayrolles, C. (2019), “Big data for agri-food 4.0 – Application to sustainability management for by-products supply chain”, in Computers in Industry, vol. 111, pp. 41-50. [Online] Available at: doi.org/10.1016/j.compind.2019.06.006 [Accessed 30 September 2025].

Belmonte-Ureña, L. J., Plaza-Úbeda, J. A., Vazquez-Brust, D. and Yakovleva, N. (2021), “Circular economy, degrowth and green growth as pathways for research on sustainable development goals – A global analysis and future agenda”, in Ecological Economics, vol. 185, article 107050, pp. 1-17. [Online] Available at: doi.org/10.1016/j.ecolecon.2021.107050 [Accessed 30 September 2025].

Bocken, N. M. P., de Pauw, I., Bakker, C. and van der Grinten, B. (2016), “Product design and business models strategies for a circular economy”, in Journal of Industrial and Production Engineering, vol. 33, issue 5, pp. 308-320. [Online] Available at: doi.org/10.1080/21681015.2016.1172124 [Accessed 30 September 2025].

Bošković, I. and Radivojević, A. (2023), “Life cycle greenhouse gas emissions of hemp-lime concrete wall constructions in Serbia – The impact of carbon sequestration, transport, waste production and end of life biogenic carbon emission”, in Journal of Building Engineering, vol. 66, article 105908, pp. 1-14. [Online] Available at: doi.org/10.1016/j.jobe.2023.105908 [Accessed 30 September 2025].

McDonough, W. and Braungart, M. (2002), Cradle to Cradle – Remarking the Way We Make Things, North Point Press, New York.

Buratti, C., Belloni, E., Lascaro, E., Merli, F. and Ricciardi, P. (2018), “Rice husk panels for building applications – Thermal, acoustic and environmental characterization and comparison with other innovative recycled waste materials”, in Construction and Building Materials, vol. 171, pp. 338-349. [Online] Available at: doi.org/10.1016/j.conbuildmat.2018.03.089 [Accessed 30 September 2025].

Caldeira, C., Farcal, F., Moretti, C., Mancini, L., Rauscher, H., Rasmussen, K., Riego Sintes, J. and Sala, S. (2022), Safe and Sustainable by Design chemicals and materials – Review of safety and sustainability dimensions, aspects, methods, indicators, and tools, EUR 30991 EN, Publications Office of the European Union, Luxembourg, JRC127109. [Online] Available at: publications.jrc.ec.europa.eu/repository/handle/JRC127109 [Accessed 15 October 2025].

Carcassi, O. B., Habert, G., Malighetti, L. E. and Pittau, F. (2022), “Material diets for climate-neutral construction”, in Environmental Science and Technology, vol. 56, issue 8, pp. 5213-5223. [Online] Available at: doi.org/10.1021/acs.est.1c05895 [Accessed 30 September 2025].

Chen, X., Chen, F., Yang, Q., Gong, W., Wang, J., Li, Y. and Wang, G. (2023), “An environmental food packaging material part I – A case study of Life-Cycle Assessment (LCA) for bamboo fiber environmental tableware”, in Industrial Crops and Products, vol. 194, article 116279, pp. 1-12. [Online] Available at: doi.org/10.1016/j.indcrop.2023.116279 [Accessed 30 September 2025].

Chipade, A. M., Vispute, P. P., Sonawane, S. K., Sasane, N. B., Jadhav, M. and Nerlekar, T. (2025), “Construction Materials for Sustainable Environment in Residential Buildings”, in Journal of Mines, Metals and Fuels, vol. 73, issue 1, pp. 173-188. [Online] Available at: doi.org/10.18311/JMMF/2025/46248 [Accessed 30 September 2025].

Circle Economy (2025), Circularity Gap Report 2025 – A circular economy to live within the safe limits of the planet. [Online] Available at: circularity-gap.world/2025 [Accessed 30 September 2025].

Cortés-Peña, Y., Kumar, D., Singh, V. and Guest, J. S. (2020), “BioSTEAM – A Fast and Flexible Platform for the Design, Simulation, and Techno-Economic Analysis of Biorefineries under Uncertainty”, in ACS | Sustainable Chemistry and Engineering, vol. 8, issue 8, pp. 3308-3310. [Online] Available at: doi.org/10.1021/acssuschemeng.9b07040 [Accessed 30 September 2025].

Cosentino, L., Fernandes, J. and Mateus, R. (2024), “Fast-Growing Bio-Based Construction Materials as an Approach to Accelerate United Nations Sustainable Development Goals”, in Applied Sciences, vol. 14, issue 11, article 4850, pp. 1-12. [Online] Available at: doi.org/10.3390/app14114850 [Accessed 30 September 2025].

Cucchiella, F., Rotilio, M., Barile, G., De Berardinis, P., Leoni, A., Ragnoli, M., Scarsella, M. and Stornelli, V. (2024), “Renovation wave – A bioeconomy panel produced with waste”, in Journal of Cleaner Production, vol. 467, article 142868, pp. 1-20. [Online] Available at: doi.org/10.1016/j.jclepro.2024.142868 [Accessed 30 September 2025].

Dace, E., Cascavilla, A., Bianchi, M., Chioatto, E., Zecca, E., Ladu, L. and Yilan, G. (2024), “Barriers to transitioning to a circular bio-based economy – Findings from an industrial perspective”, in Sustainable Production and Consumption, vol. 48, pp. 407-418. [Online] Available at: doi.org/10.1016/j.spc.2024.05.029 [Accessed 30 September 2025].

Dotelli, G., Moletti, C., Aversa, P., Sabbadini, S., Marzo, A., Tripepi, C., Lauriola, P. and Luprano, V. A. M. (2020), “Hempcrete buildings – Environmental sustainability and durability of two case-studies in North and South Italy”, in Serrat, C., Casas, J. R. and Gibert, V. (eds), DBMC 2020 – XV International Conference on Durability of Building Materials and Components, Barcelona, Catalonia, October 20-23, 2020, Scipedia, pp. 1-8. [Online] Available at: doi.org/10.23967/dbmc.2020.213 [Accessed 30 September 2025].

EN 16575:2014, Bio-based products – Vocabulary. [Online] Available at: store.uni.com/en-16575-2014 [Accessed 15 October 2025].

Essaghouri, L., Mao, R. and Li, X. (2023), “Environmental benefits of using hempcrete walls in residential construction – An LCA-based comparative case study in Morocco”, in Environmental Impact Assessment Review, vol. 100, article 107085, pp. 1-15. [Online] Available at: doi.org/10.1016/j.eiar.2023.107085 [Accessed 30 September 2025].

European Commission (2023), “New European Bauhaus Academy to build skills for sustainable construction with innovative materials”, in ec.europa.eu, 18/12/2023. [Online] Available at: ec.europa.eu/commission/presscorner/detail/en/ip_23_6593 [Accessed 30 September 2025].

European Commission (2021), Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – New European Bauhaus – Beautiful, Sustainable, Together, COM/2021/573 final. [Online] Available at: new-european-bauhaus.europa.eu/system/files/2021-09/COM(2021)_573_EN_ACT.pdf [Accessed 30 September 2025].

European Commission (2020), Circular Economy Action Plan – International aspects, Publications Office of the European Union, Luxembourg. [Online] Available at: data.europa.eu/doi/10.2779/085517 [Accessed 30 September 2025].

European Commission (2019), Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – The European Green Deal, document 52019DC0640, COM/2019/640 final. [Online] Available at: eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52019DC0640 [Accessed 30 September 2025].

Fernando, S., Gunasekara, C., Law, D. W., Nasvi, M. C.M., Setunge, S. and Dissanayake, R. (2021), “Life cycle assessment and cost analysis of fly ash-rice husk ash blended alkali-activated concrete”, in Journal of Environmental Management, vol. 295, article 113140, pp. 1-11. [Online] Available at: doi.org/10.1016/j.jenvman.2021.113140 [Accessed 30 September 2025].

Ferrara, M. and Squatrito, A. (2022), “L’innovazione Design-driven dei materiali circolari a base biologica – Strategie e competenze per la progettazione | Design-driven innovation of bio-based circular materials – Design strategies and skills”, in Agathón | International Journal of Architecture, Art and Design, vol. 11, pp. 288-299. [Online] Available at: doi.org/10.19229/2464-9309/11262022 [Accessed 30 September 2025].

Garas, G., Sayed, A. M. and Hana Bakhoum, E. S. H. (2021), “Application of nano waste particles in concrete for sustainable construction – A comparative study”, in International Journal of Sustainable Engineering, vol. 14, issue 6, pp. 2041-2047. [Online] Available at: doi.org/10.1080/19397038.2021.1963004 [Accessed 30 September 2025].

García-Velásquez, C., Leduc, S. and van der Meer, Y. (2022), “Design of biobased supply chains on a life cycle basis – A bi-objective optimization model and a case study of biobased polyethylene terephthalate (PET)”, in Sustainable Production and Consumption, vol. 30, pp. 706-719. [Online] Available at: doi.org/10.1016/j.spc.2022.01.003 [Accessed 30 September 2025].

Garkoti, P. and Thengane, S. K. (2025), “Techno-economic and life cycle assessment of circular economy-based biogas plants for managing organic waste”, in Journal of Cleaner Production, vol. 504, article 145412, pp. 1-13. [Online] Available at: doi.org/10.1016/j.jclepro.2025.145412 [Accessed 30 September 2025].

Giordano, R. and Andreotti, J. (2023), “DEC50 – Strumenti per la decarbonizzazione dei manufatti edilizi | DEC50 – Building decarbonisation tools”, in Techne | Journal of Technology for Architecture and Environment, vol. 26, pp. 207-216. [Online] Available at: doi.org/10.36253/techne-14435 [Accessed 30 September 2025].

Giuffrida, G., Dipasquale, L., Pulselli, R. M. and Caponetto, R. (2024), “Compared environmental lifecycle performances of earth-based walls to drive building envelope design”, in Sustainability, vol. 16, issue 4, article 1367, pp. 1-22. [Online] Available at: doi.org/10.3390/su16041367 [Accessed 30 September 2025].

Göswein, V., Arehart, J., Phan-Huy, C., Pomponi, F. and Habert, G. (2022), “Barriers and opportunities of fast-growing biobased material use in buildings”, in Buildings and Cities, vol. 3, issue 1, pp. 745-755. [Online] Available at: doi.org/10.5334/bc.254 [Accessed 30 September 2025].

Gounni, A., Mabrouk, M. T., El Wazna, M., Kheiri, A., El Alami, M., El Bouari, A. and Cherkaoui, O. (2019), “Thermal and economic evaluation of new insulation materials for building envelope based on textile waste”, in Applied Thermal Engineering, vol. 149, pp. 475-483. [Online] Available at: doi.org/10.1016/j.applthermaleng.2018.12.057 [Accessed 30 September 2025].

Gursel, A. P., Maryman, H. and Ostertag, C. (2016), “A life-cycle approach to environmental, mechanical, and durability properties of ‘green’ concrete mixes with rice husk ash”, in Journal of Cleaner Production, vol. 112, issue 1, pp. 823-836. [Online] Available at: doi.org/10.1016/j.jclepro.2015.06.029 [Accessed 30 September 2025].

Hartini, S., Azzahra, F., Purwaningsih, R., Ramadan, B. S. and Sari, D. P. (2023), “Framework for Increasing Eco-efficiency in the Tofu Production Process – Circular Economy Approach”, in Production Engineering Archives, vol. 29, issue 4, pp. 452-460. [Online] Available at: doi.org/10.30657/pea.2023.29.50 [Accessed 30 September 2025].

ISO 15686-5:2017, Buildings and constructed assets – Service life planning – Part 5 – Life-Cycle Costing. [Online] Available at: store.uni.com/en/iso-15686-5-2017 [Accessed 30 September 2025].

Isopescu, D. N., Adam, L., Nistorac, A. and Bodoga, A. (2024), “Carbon Footprint Assessment – Case Studies for Hemp-Based Eco-Concrete Masonry Blocks”, in Buildings, vol. 14, issue 10, article 3150, pp. 1-15. [Online] Available at: doi.org/10.3390/buildings14103150 [Accessed 30 September 2025].

Kayaçetin, N. C., Piccardo, C. and Versele, A. (2023), “Social Impact Assessment of Circular Construction: Case of Living Lab Ghent”, in Sustainability, vol. 15, issue 1, article 721, pp.1-15. [Online] Available at: doi.org/10.3390/su15010721 [Accessed 30 September 2025].

Keena, N., Raugei, M., Lokko, M.-L., Aly Etman, M., Achnani, V., Reck, B. K. and Dyson, A. (2022), “A Life-Cycle Approach to Investigate the Potential of Novel Biobased Construction Materials toward a Circular Built Environment”, in Energies, vol. 15, issue 19, article 7239, pp. 1-19. [Online] Available at: doi.org/10.3390/en15197239 [Accessed 30 September 2025].

Khan, N. W. and Ali, Y. (2019), “Sustainable construction – Lessons learned from life cycle assessment (LCA) and life cycle cost analysis (LCCA)”, in Construction Innovation – Information Process Management, vol. 20, issue 2, pp. 191-207. [Online] Available at: doi.org/10.1108/CI-05-2019-0040 [Accessed 30 September 2025].

Komkova, A. and Habert, G. (2023), “Optimal supply chain networks for waste materials used in alkali-activated concrete fostering circular economy”, in Resources, Conservation and Recycling, vol. 193, article 106949, pp. 1-11. [Online] Available at: doi.org/10.1016/j.resconrec.2023.106949 [Accessed 30 September 2025].

Kristianto, Y. and Zhu, L. (2017), “Techno-economic optimization of ethanol synthesis from rice-straw supply chains”, in Energy, vol. 141, pp. 2164-2176. [Online] Available at: doi.org/10.1016/j.energy.2017.09.077 [Accessed 30 September 2025].

Le, D. L., Salomone, R., Nguyen, Q. T., Versele, A. and Piccardo, C. (2025), “Drivers for adopting circular bio-based building materials to facilitate a circular transition – A case of a developed economy”, in Journal of Environmental Planning and Management, pp. 1-27. [Online] Available at: doi.org/10.1080/09640568.2025.2475448 [Accessed 30 September 2025].

Le, D. L., Salomone, R. and Nguyen, Q. T. (2024), “Sustainability assessment methods for circular bio-based building materials – A literature review”, in Journal of Environmental Management, vol. 352, article 120137, pp. 1-14. [Online] Available at: doi.org/10.1016/j.jenvman.2024.120137 [Accessed 15 October 2025].

Littell, J. H., Corcoran, J. and Pillai, V. (2008), Systematic Reviews and Meta-Analysis – Pocket Guides to Social Work Research Methods, Oxford University Press, New York. [Online] Available at: doi.org/10.1093/acprof:oso/9780195326543.001.0001 [Accessed 30 September 2025].

Mancini, L., Valente, A., Barbero Vignola, G., Sanyé-Mengual, E. and Sala, S. (2023), “Social footprint of European food production and consumption”, in Sustainable Production and Consumption, vol. 35, pp. 287-299. [Online] Available at: doi.org/10.1016/j.spc.2022.11.005 [Accessed 30 September 2025].

Martínez, A. and Miller, S. A. (2025), “Life cycle assessment and production cost of geopolymer concrete – A meta-analysis”, in Resources, Conservation & Recycling, vol. 215, article 108018, pp. 1-13. [Online] Available at: doi.org/10.1016/j.resconrec.2024.108018 [Accessed 30 September 2025].

Mesa, J., Esparragoza, I. and Maury, H. (2018), “Developing a set of sustainability indicators for product families based on the circular economy model”, in Journal of Cleaner Production, vol. 196, pp. 1429-1442. [Online] Available at: doi.org/10.1016/j.jclepro.2018.06.131 [Accessed 30 September 2025].

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. and PRISMA Group (2009), “Preferred reporting items for systematic reviews and meta-analyses – The PRISMA statement”, in PLOS Medicine Journal, vol. 6, issue 7, article e1000097, pp. 1-6. [Online] Available at: doi.org/10.1371/journal.pmed.1000097 [Accessed 15 October 2025].

Morpurgo, E. (2024), “Biomateriali e zone umide – Filiere per l’edilizia e il tessile dalla valorizzazione di ecosistemi locali | Biomaterials and wetlands – Supply chains for construction and textiles through the enhancement of local ecosystems”, in Agathón | International Journal of Architecture, Art and Design, vol. 16, pp. 314-323. [Online] Available at: doi.org/10.19229/2464-9309/16262024 [Accessed 30 September 2025].

Mouton, L., Allacker, K. and Röck, M. (2023), “Bio-based building material solutions for environmental benefits over conventional construction products – Life cycle assessment of regenerative design strategies (1/2)”, in Energy and Buildings, vol. 282, article 112767, pp. 1-14. [Online] Available at: doi.org/10.1016/j.enbuild.2022.112767 [Accessed 30 September 2025].

Ondova, M., Stevulova, N. and Meciarova, L. (2013), “The potential of higher share of fly ash as cement replacement in the concrete pavement”, in Procedia Engineering, vol. 65, pp. 45-50. [Online] Available at: doi.org/10.1016/j.proeng.2013.09.009 [Accessed 30 September 2025].

Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., Soleymani, A., Jahangir, H. and Dabbaghi, F. (2022), “Optimization of Green Concrete Containing Fly Ash and Rice Husk Ash Based on Hydro-Mechanical Properties and Life Cycle Assessment Considerations”, in Civil Engineering Journal, vol. 8, issue 12, pp. 3912-3938. [Online] Available at: doi.org/10.28991/CEJ-2022-08-12-018 [Accessed 30 September 2025].

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinnes, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P. and Moher, D. (2021), “The PRISMA 2020 statement – An updated guideline for reporting systematic reviews”, in JCE | Journal of Clinical Epidemiology, vol. 134, pp. 178-189. [Online] Available at: doi.org/10.1016/j.jclinepi.2021.03.001 [Accessed 30 September 2025].

Parvathy, S. U., Kolil, V. K., Raman, R., Vinuesa, R. and Achuthan, K. (2025), “Integrating sustainable development goals into life cycle thinking – A multidimensional approach for advancing sustainability”, in Environment, Development and Sustainability, pp. 1-39. [Online] Available at: doi.org/10.1007/s10668-024-05810-z [Accessed 30 September 2025].

Paul, S., Islam, M. S. and Elahi, T. E. (2023), “Potential of waste rice husk ash and cement in making compressed stabilized earth blocks – Strength, durability and life cycle assessment”, in Journal of Building Engineering, vol. 73, article 106727, pp. 1-20. [Online] Available at: doi.org/10.1016/j.jobe.2023.106727 [Accessed 30 September 2025].

Pennacchio, R., Savio, L., Bosia, D., Thiébat, F., Piccablotto, G., Patrucco, A. and Fantucci, S. (2017), “Fitness – Sheep-wool and Hemp Sustainable Insulation Panels”, in Energy Procedia, vol. 111, pp. 287-297. [Online] Available at: doi.org/10.1016/j.egypro.2017.03.030 [Accessed 30 September 2025].

Piccardo, C., Dodoo, A., Gustavsson, L. and Tettey, U. (2020), “Retrofitting with different building materials – Life-cycle primary energy implications”, in Energy, vol. 192, article 116648, pp. 1-13. [Online] Available at: doi.org/10.1016/j.energy.2019.116648 [Accessed 30 September 2025].

Pinelli, D., Zanaroli, G., Rashed, A. A., Oertle, E., Wardenaar, T., Mancini, M., Vettore, D., Fiorentino, C., Frascari, D. (2020), “Comparative preliminary evaluation of 2 in‐stream water treatment technologies for the agricultural reuse of drainage water in the Nile Delta”, in Integrated Environmental Assessment and Management, vol. 16, issue 6, pp. 920–933. [Online] Available at: doi.org/10.1002/ieam.4277 [Accessed 30 September 2025].

Pittau, F., Giacomel, D., Iannaccone, G. and Malighetti, L. (2020), “Environmental consequences of refurbishment versus demolition and reconstruction – A comparative life cycle assessment of an Italian case study”, in Journal of Green Building, vol. 15, issue 4, pp. 155-172. [Online] Available at: doi.org/10.3992/jgb.15.4.155 [Accessed 30 September 2025].

Quintana-Gallardo, A., Alba, J., del Rey, R., Crespo-Amorós, J. E. and Guillén-Guillamón, I. (2020), “Life-cycle assessment and acoustic simulation of drywall building partitions with bio-based materials”, in Polymers, vol. 12, issue 9, article 1965, pp. 1-16. [Online] Available at: doi.org/10.3390/polym12091965 [Accessed 30 September 2025].

Quintana-Gallardo, A., Romero Clausell, J., Guillén-Guillamón, I. and Mendiguchia, F. A. (2021), “Waste valorization of rice straw as a building material in Valencia and its implications for local and global ecosystems”, in Journal of Cleaner Production, vol. 318, article 128507, pp. 1-12. [Online] Available at: doi.org/10.1016/j.jclepro.2021.128507 [Accessed 30 September 2025].

Ramos, A., Briga-Sá, A., Pereira, S., Correia, M., Pinto, J., Bentes, I. and Teixeira, C. A. (2021), “Thermal performance and life cycle assessment of corn cob particleboards”, in Journal of Building Engineering, vol. 44, article 102998, pp. 1-13. [Online] Available at: doi.org/10.1016/j.jobe.2021.102998 [Accessed 30 September 2025].

Ricciardi, P., Belloni, E., Merli, F. and Buratti, C. (2021), “Sustainable panels made with industrial and agricultural waste – Thermal and environmental critical analysis of the experimental results”, in Applied Sciences, vol. 11, issue 2, article 494, pp. 1-14. [Online] Available at: doi.org/10.3390/app11020494 [Accessed 30 September 2025].

Rigillo, M., Galluccio, G. and Paragliola, F. (2023), “Digitale e circolarità in edilizia – Le KETs per la gestione degli scarti in UE | Digital and circularity in building – KETs for waste management in the European Union”, in Agathón | International Journal of Architecture, Art and Design, vol. 13, pp. 247-258. [Online] Available at: doi.org/10.19229/2464-9309/13212023 [Accessed 30 September 2025].

Safaripour, M., Hossain, K. G., Ulven, C. A. and Pourhashem, G. (2021), “Environmental impact tradeoff considerations for wheat bran-based biocomposite” in Science of the Total Environment, vol. 781, article 146588, pp. 1-11. [Online] Available at: doi.org/10.1016/j.scitotenv.2021.146588 [Accessed 30 September 2025].

Salzer, C., Wallbaum, H., Ostermeyer, Y. and Kono, J. (2017), “Environmental performance of social housing in emerging economies – Life cycle assessment of conventional and alternative construction methods in the Philippines”, in The International Journal of Life Cycle Assessment, vol. 22, issue 11, pp. 1785-1801. [Online] Available at: doi.org/10.1007/s11367-017-1362-3 [Accessed 30 September 2025].

Schonhoff, A., Stöckigt, G., Wulf, C., Zappab, P. and Kuckshinrichs, W. (2023), “Biosurfactants’ production with substrates from the sugar industry – Environmental, cost, market, and social aspects”, in RSC Sustainability, vol. 1, pp. 1798-1813. [Online] Available at: doi.org/10.1039/d3su00122a [Accessed 30 September 2025].

Schroeder, P., Anggraeni, K. and Weber, U. (2019), “The Relevance of Circular Economy Practices to the Sustainable Development Goals”, in Journal of Industrial Ecology, vol. 23, issue 1, pp.77-95. [Online] Available at: doi.org/10.1111/jiec.12732 [Accessed 30 September 2025].

Scrucca, F., Ingrao, C., Maalouf, C., Moussa, T., Polidori, G., Messineo, A., Arcidiacono, C. and Asdrubali, F. (2020), “Energy and carbon footprint assessment of production of hemp hurds for application in buildings”, in Environmental Impact Assessment Review, vol. 84, article 106417, pp. 1-11. [Online] Available at: doi.org/10.1016/j.eiar.2020.106417 [Accessed 30 September 2025].

Seyedabadi, M. R., Abolhassani, S. S. and Eicker, U. (2023), “District cradle to grave LCA including the development of a localized embodied carbon database and a detailed end-of-life carbon emission workflow”, in Journal of Building Engineering, vol. 76, article 107101, pp. 1-20. [Online] Available at: doi.org/10.1016/j.jobe.2023.107101 [Accessed 30 September 2025].

Sheshadri, A., Marathe, S. and Sadowski, Ł. (2024), “Development of sustainable, high strength slag based alkali activated pavement quality concrete using agro-industrial wastes – Properties and life cycle analysis”, in International Journal of Pavement Engineering, vol. 25, issue 1, article 2410953, pp. 1-17. [Online] Available at: doi.org/10.1080/10298436.2024.2410953 [Accessed 30 September 2025].

Sifuentes-Nieves, I., Molina‑Cervantes, A., Flores‑Silva, P.C., Garza‑Santibañez, A., Saucedo‑Salazar, E., Garcia‑Hernandez, A. and Hernández‑Hernández, H. (2023), “Structural performance and eco‑efficiency assessment of biofilms obtained by a green single‑step modification of starch and agave fibers”, in Journal of Polymers and the Environment, vol. 31, pp. 4829-4841. [Online] Available at: doi.org/10.1007/s10924-023-02905-y [Accessed 30 September 2025].

Singh, J. and Ordoñez, I. (2016), “Resource recovery from post-consumer waste – Important lessons for the up-coming circular economy”, in Journal of Cleaner Production, vol. 134, part. A, pp. 342-353. [Online] Available at: doi.org/10.1016/j.jclepro.2015.12.020 [Accessed 30 September 2025].

Sinka, M., Zorica, J., Bajare, D., Sahmenko, G. and Korjakins, A. (2020), “Fast setting binders for application in 3D printing of bio-based building materials”, in Sustainability, vol. 12, issue 21, article 8838, pp. 1-12. [Online] Available at: doi.org/10.3390/su12218838 [Accessed 30 September 2025].

Soleimani, M. and Shahandashti, M. (2017), “Comparative process-based life-cycle assessment of bioconcrete and conventional concrete”, in Journal of Engineering, Design and Technology, vol. 15, issue 5, pp. 667-688. [Online] Available at: doi.org/10.1108/JEDT-04-2017-0033 [Accessed 30 September 2025].

Sposito, C. and De Giovanni, G. (2023), “Affrontare la complessità – Integrare LCA, ERA ed ESA per valutare impatti e benefici antropici sulla biosfera | Dealing with complexity – Integrating LCA, ERA and ESA to assess human impacts and benefits on the biosphere”, in Agathón | International Journal of Architecture, Art and Design, vol. 14, pp. 12-39. [Online] Available at: doi.org/10.19229/2464-9309/1412023 [Accessed 30 September 2025].

Sposito, C. and Scalisi (2023), “Riflessioni e traiettorie di ricerca interdisciplinari sulla transizione ecologica | Reflections and trajectories for interdisciplinary research on the ecological transition”, in Agathón | International Journal of Architecture, Art and Design, vol. 13, pp. 3-18. [Online] Available at: doi.org/10.19229/2464-9309/1302023 [Accessed 30 September 2025].

Sprenger, J.-M., Albrecht, K., Minkov, N., Finkbeiner, M., Schönfeld, L., Meyer, K. V. and Müssig, J. (2025), “Stiffness and Strength-Related Sustainability Assessment of Natural Fibers for Injection Molded Composites”, in Journal of Natural Fibers, vol. 22, issue 1, article 2531372, pp. 1-19. [Online] Available at: doi.org/10.1080/15440478.2025.2531372 [Accessed 30 September 2025].

Thiébat, F. and Morselli, F. (2025), “Materiali biogenici per la decarbonizzazione dell’ambiente costurito | Biogenic materials for the decarbonisation of the built environment”, in Techne | Journal of Technology for Architecture and Environment, vol. 29, issue 1, pp. 108-117. [Online] Available at: doi.org/10.36253/techne-16598 [Accessed 30 September 2025].

UN – United Nations (2015), Transforming Our World – The 2030 Agenda for Sustainable Development – A/RES/70/1. [Online] Available at: sdgs.un.org/2030agenda [Accessed 30 September 2025].

UNEP – United Nations Environment Programme (2020), Guidelines for Social Life Cycle Assessment of Products and Organizations. [Online] Available at: lifecycleinitiative.org/library/guidelines-for-social-life-cycle-assessment-of-products-and-organisations-2020/ [Accessed 15 October 2025].

UNEP – United Nations Environment Programme and IRP – International Resource Panel (2024), Bend the trend –Pathways to a liveable planet as resource use spikes – Global resource outlook 2024. [Online] Available at: unep.org/resources/Global-Resource-Outlook-2024 [Accessed 15 October 2025].

UNEP – United Nations Environment Programme and SETAC – Society of Environmental Toxicology and Chemistry (2009), Guidelines for social life cycle assessment of products. [Online] Available at: unep.org/resources/report/guidelines-social-life-cycle-assessment-products [Accessed 15 October 2025].

UNI EN 16575:2014, Bio-based products – Vocabulary. [Online] Available at: store.uni.com/en/uni-en-16575-2014 [Accessed 30 September 2025].

UNI EN 15978:2011, Sustainability of construction works – Assessment of environmental performance of buildings – Calculation method. [Online] Available at: store.uni.com/en/uni-en-15978-2011 [Accessed 30 September 2025].

UNI EN 15804:2021, Sustainability of construction works – Environmental Product Declarations – Core rules for the product category of construction products. [Online] Available at: store.uni.com/en/uni-en-15804-2021 [Accessed 30 September 2025].

UNI EN ISO 14044:2021, Environmental management – Life Cycle Assessment – Requirements and guidelines. [Online] Available at: store.uni.com/en/search/ALL/1/14044 [Accessed 30 September 2025].

UNI EN ISO 14040:2021, Environmental management – Life Cycle Assessment – Principles and framework. [Online] Available at: store.uni.com/en/uni-en-iso-14040-2021 [Accessed 30 September 2025].

Vilaboa Díaz, A., López, A. F. and Bugallo, P. M. B. (2022), “Analysis of biowaste-based materials in the construction sector – Evaluation of thermal behaviour and life cycle assessment (LCA)”, in Waste and Biomass Valorization, vol. 13, pp. 4983-5004. [Online] Available at: doi.org/10.1007/s12649-022-01820-y [Accessed 30 September 2025].

Violano, A., Cannaviello, M. and Del Prete, S. (2021), “Materiali rigenerativi bio-based – Una proposta innovative per il packaging e i prodotti da costruzione | Bio-based circular materials – Innovative packaging and construction products”, in Agathón | International Journal of Architecture, Art and Design, vol. 9, pp. 244-253. [Online] Available at: doi.org/10.19229/2464-9309/9242021 [Accessed 30 September 2025].

Yu, D., Tan, H. and Ruan, Y. (2011), “A future bamboo-structure residential building prototype in China – Life cycle assessment of energy use and carbon emissions”, in Energy and Buildings, vol. 43, issue 10, pp. 2638-2646. [Online] Available at: doi.org/10.1016/j.enbuild.2011.06.013 [Accessed 30 September 2025].

Zabalza Bribián, I., Valero Capilla, A. and Aranda Usón, A. (2011), “Life cycle assessment of building materials – Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential”, in Building and Environment, vol. 46, issue 5, pp. 1133-1140. [Online] Available at: doi.org/10.1016/j.buildenv.2010.12.002 [Accessed 30 September 2025].

Zhang, Y., Yan, D., Hu, S. and Guo, S. (2019), “Modelling of energy consumption and carbon emission from the building construction sector in China – A process-based LCA approach”, in Energy Policy, vol. 134, article 110949, pp. 1-9. [Online] Available at: doi.org/10.1016/j.enpol.2019.110949 [Accessed 30 September 2025].

Zumsteg, J. M., Cooper, J. S. and Noon, M. S. (2012), “Systematic review checklist – A standardized technique for assessing and reporting reviews of life cycle assessment data”, in Journal of Industrial Ecology, vol. 16, issue s1, S12-S21. [Online] Available at: doi.org/10.1111/j.1530-9290.2012.00476.x [Accessed 15 October 2025].

Analysis of natural fibres by types and origins related to n. 108 records found on 8/8/2025. AGATHÓN 18 | 2025

##submission.downloads##

Pubblicato

30-12-2025

Come citare

Thiébat, F., Masoero, A., Morselli, F., Fregonara, E., Senatore, C., Muñoz Veloza, M. A. e Giordano, R. (2025) «Fibre naturali e circolarità in architettura – Sostenibilità ambientale, economica e sociale», AGATHÓN | International Journal of Architecture Art and Design, 18, pagg. 316–331. doi: 10.69143/2464-9309/18192025.