Oggetto-campo. Uno studio multi-risoluzione sull’ottimizzazione topologica
DOI:
https://doi.org/10.19229/2464-9309/7152020Parole chiave:
oggetto-campo, multi-risoluzione, ottimizzazione topologica, progettazione algoritmica, fabbricazione digitaleAbstract
Con l’integrazione degli strumenti digitali nella progettazione architettonica, si può osservare una certa ridefinizione della nozione di ‘struttura’, lontana da schemi noti e generalmente studiati. Seguendo i progressi nei campi della simulazione e dell’ottimizzazione topologica, si esporranno alcuni progetti-chiave studiando il loro livello prestazionale e delineando nella logica formale definita da questo processo il loro limite comune. Si ritiene che una possibile soluzione a questo limite risieda nel cambiamento di scala nel metodo di progettazione, adottando sistemi a multi-risoluzione, in cui ogni granello di materia può adattarsi alle informazioni strutturali presenti alla macro scala. In considerazione di ciò, si propone un progetto di ricerca progettuale che esplora questo salto di scala attraverso quattro oggetti-campo, ossia oggetti che sono formalmente autonomi, ma che tuttavia esprimono il loro campo strutturale interno attraverso una trasposizione a scala microscopica dell’ottimizzazione topologica.
Downloads
##plugins.generic.articleMetricsGraph.articlePageHeading##
Riferimenti bibliografici
Aghaei-Meibodi, M., Bernhard, M., Jipa, A. and Dillenburger, B. (2017), “The Smart Takes from the Strong”, in Sheil, B., Menges, A., Glynn, R. and Marilena, S. (eds), Fabricate Rethinking Design and Construction, UCL Press, London, pp. 210-217. [Online] Available at: www.research-collection.ethz.ch/handle/20.500.11850/237103 [Accessed 11 March 2020].
Allen, L. and Caspar Pearson, L. (eds) (2016), Drawing Futures – Speculations in Contemporary Drawing for Art and Architecture, UCL Press, London. [Online] Available at: www.uclpress.co.uk/products/83097 [Accessed 26 March 2020].
Ball, P. (1999), The Self-made Tapestry – Pattern Formation in Nature, Oxford University Press, Oxford.
Balmond, C. (2007), Informal, Prestel, New York.
Beckett, R. and Babu, S. (2014), “To the Micron: A New Architecture Through High-Resolution Multi-Scalar Design and Manufacturing”, in Architectural Design | Special Issue – High Definition: Zero Tolerance in Design and Production, vol. 84, issue 1, pp. 112-115. [Online] Available at: doi.org/10.1002/ad.1709 [Accessed 26 March 2020].
Bendsøe, M. P. and Sigmund, O. (2003), Topology Optimization – Theory, Methods, and Applications, Springer, Switzerland.
Benedikt, M. and Bieg, K. (eds) (2018), Center 21 – The Secret Life of Buildings, Texas Center for American Architecture and Design, Austin.
Bernier-Lavigne, S. (2020), “Object-field – An adaptive interplay between autonomy and contingency”, in Ficca, J., Kulper, A. and La, G. (eds), ACSA 107th Annual Meeting, Black Box – Articulating architecture’s Core in the Post-Digital Era, march 28-30, 2019, Pittsburgh, ACSA Press, pp. 640-645.
Bonner, J. T. (1952), Morphogenesis – An Essay on Development, Princeton University Press, Princeton.
Bontems, V. (2008), “Quelques éléments pour une épistémologie des relations d’échelle chez Gilbert Simondon”, in Appareil, n. 2, pp. 1-14. [Online] Available at: doi.org/10.4000/appareil.595 [Accessed 30 March 2020].
Bryant, L. R. (2011), The Democracy of Objects, Open Humanities Press, Ann Arbor. [Online] Available at: www.openhumanitiespress.org/books/titles/the-democracy-of-objects/ [Accessed 11 March 2020].
Brayer, M.-A. et alii (eds) (2010), Monolithes ou l’architecture en suspens (1950-2010), Frac Centre, Orléans.
Carpo, M. (2016), “Excessive Resolution: From Digital Streamlining to Computational Complexity”, in Architectural Design | Special Issue – Evoking Through Design: Contemporary Moods in Architecture, vol. 86, issue 6, pp. 78-83. [Online] Available at: doi.org/10.1002/ad.2114 [Accessed 30 March 2020].
Carpo, M. (2014), “Breaking the Curve – Big Data and Design”, in Artforum, vol. 52, n. 6. [Online] Available at: artforum.com/inprint/issue=201402&id=45013&pagenum=0 [Accessed 11 March 2020].
Cazacu, R. and Grama, L. (2014), “Overview of Structural Topology Optimization Methods for Plane and Solid Structures”, in Annals of the University of Oreda – Fascicle of Management and Technological Engineering, vol. XXIII (XIII), issue 3, pp. 17-23. [Online] Available at: citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.8287&rep=rep1&type=pdf [Accessed 23 February 2020].
Damisch, H. (1972), Théorie du nuage – Pour une histoire de la peinture, Seuil, Paris.
Gage, M. F. (2015), “Killing Simplicity – Object-Oriented Philosophy in Architecture”, in Vv. Aa., LOG 33, Anyone Corporation, New York, pp. 95-106.
Gage, M. F. and Meredith, M. (2019), Visiting Lecture | Mark Foster Gage and Michael Meredith in Conversation – Multiple Resolutions. [Online] Available at: www.youtube.com/watch?v=Kn8SExRkcnE [Accessed 21 February 2020].
Harman, G. (2013), “Objets et Architecture | Objects and Architecture”, in Brayer, M. F. and Migayrou, F. (eds), Naturaliser l’architecture naturalizing Archilab, Édition HYX, Orléans, pp. 234-243.
Hui, Y. (2016), On the Existence of Digital Objects, University of Minnesota Press, Minneapolis.
Hwang, I. (2006), Verb – Nature (2006), Actar, Barcelona.
Ito, T., Buntrock, D., Riken, Y. and Igarashi, T. (2009), Toyo Ito, Phaidon, London.
Jipa, A., Bernhard, M., Aghaei Meibodi, M. and Dillenburger, B. (2016), “3D-Printed Stay-in-Place Formwork for Topologically Optimized Concrete Slabs”, in Bieg, K. (ed.), 2016 TxA Emerging Design + Technology Conference, San Antonio, Texas, November 3-5, pp. 97-107. [Online] Available at: www.researchgate.net/publication/327793571_3DPrinted_StayinPlace _Formwork_for_Topologically_Optimized_Concrete_Slabs [Accessed 26 March 2020].
Kolarevic, B. (2005), Performative Architecture – Beyond Instrumentality, Spon Press, New York.
Kumar, M. (2013), Le Grand Roman de la physique quantique – Einstein, Bohr... et le débat sur la nature de la réalité, Flammarion-Champs Science, Paris.
Laarman, J. (2017), Joris Laarman – Lab, August Editions, New York.
Menges, A. (2012), “Material Computation – Higher Integration in Morphogenetic Design”, in Architectural Design | Morphogenetic Design, vol. 82, n. 2, pp. 14-21.
Museum Für Gestaltung Zürich and Sachs, A. (2007), Nature Design – From Inspiration to Innovation, Lars Muller Publishers.
Nakamura, H. (2010), Microscopic Desinging Methodology, Lixil Publishing, Tokyo.
Otto, F. and Rasch, B. (1995), Finding Form – Towards an Architecture of the Minimal, Axel Menges, Berlin.
Picon, A. (2018), La matérialité de l’architecture, Éditions Parenthèses, Marseille.
Reiser, J. and Umemoto, N. (2006), Atlas of Novel Tectonics, Princeton Architectural Press, New York.
Sasaki, M. (2007), Morphogenesis of Flux Structure, AA Publications, London.
Simondon, G. (2012), Du Mode d’existence des objets techniques, Flammarion, Paris.
Teyssot, G. (2012), “The Diagram as Abstract Machine”, in VIRUS | Revista do nomads, n. 7, pp. 1-13. [Online] Available at: www.nomads.usp.br/virus/virus07/secs/invited/virus_07_invited_1_en.pdf [Accessed 15 March 2020].
Teyssot, G. and Bernier-Lavigne, S. (2011), “Forme et information. Chronique de l’architecture numérique”, in Guiheux, A. (ed.), Action Architecture, Éditions de la Villette, Paris, pp. 49-87.
Thompson, D’A. (2009), Forme et Croissance, Seuil, Paris.
Thompson, D. W. (1917), On Growth and Form, Cambridge University Press, Cambridge.
von Uexkull, J. (2010), Milieu animal et milieu humain, Rivages, Paris.
Vv. Aa. (2017), Teshima Art Museum, Fukutake Foundation, Naoshima.
Wigley, M. (2001), “Network Fever”, in Grey Room, n. 4, pp. 82-122. [Online] Available at: www.mitpressjournals.org/toc/grey/4 [Accessed 15 February 2020].
Young, M. (2018), “Paradigmatic Resolution: The Debased Flower Images of Young & Ayata”, in Paprika!, vol. 3, issue 10. [Online] Available at: yalepaprika.com/articles/paradigmatic-resolution-the-debased-flower-images-of-young-ayata [Accessed 26 March 2020].
Young, M. and Young & Ayata (2015), The Estranged Object, Graham Foundation, Chicago.
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
AGATHÓN è pubblicata sotto la licenza Creative Commons Attribution License 4.0 (CC-BY).
License scheme | Legal code
Questa licenza consente a chiunque di:
Condividere: riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare questo materiale con qualsiasi mezzo e formato.
Modificare: remixare, trasformare il materiale e basarti su di esso per le tue opere per qualsiasi fine, anche commerciale.
Alle seguenti condizioni
Attribuzione: si deve riconoscere una menzione di paternità adeguata, fornire un link alla licenza e indicare se sono state effettuate delle modifiche; si può fare ciò in qualsiasi maniera ragionevole possibile, ma non con modalità tali da suggerire che il licenziante avalli l'utilizzatore o l'utilizzo del suo materiale.
Divieto di restrizioni aggiuntive: non si possono applicare termini legali o misure tecnologiche che impongano ad altri soggetti dei vincoli giuridici su quanto la licenza consente di fare.
Note
Non si è tenuti a rispettare i termini della licenza per quelle componenti del materiale che siano in pubblico dominio o nei casi in cui il nuovo utilizzo sia consentito da una eccezione o limitazione prevista dalla legge.
Non sono fornite garanzie. La licenza può non conferire tutte le autorizzazioni necessarie per l'utilizzo che ci si prefigge. Ad esempio, diritti di terzi come i diritti all'immagine, alla riservatezza e i diritti morali potrebbero restringere gli usi del materiale.