Pattern modulari nel design igroscopico con stampa 4D – Forma e programmazione del materiale

Autori

  • David Correa Università di Waterloo (Canada)
  • Fabio Bianconi Università of Perugia (Italia)
  • Marco Filippucci Università di Perugia (Italia)
  • Giulia Pelliccia Ingegnere

DOI:

https://doi.org/10.19229/2464-9309/14222023

Parole chiave:

soluzioni bio-ispirate, cambiamento di forma, programmazione del materiale, compositi a base di legno, modelli modulari

Abstract

La ricerca illustra l’impiego della stampa 4D (4DP) per la creazione di attuatori di ispirazione biologica e igro-responsivi con Compositi Polimerici di Legno (WPC), evidenziando come il controllo della cinematica attraverso la programmazione dei materiali e dei parametri di stampa consenta di ottenere meccanismi dinamici di cambiamento di forma in risposta a fattori ambientali. Nella 4DP le configurazioni geometriche degli oggetti stampati dipendono non solo dai materiali, ma anche dalla loro combinazione, dal tempo e dagli stimoli ambientali, introducendo il concetto di architettura del materiale e ridefinendo il rapporto tra forma e materia. In questo articolo viene discussa la relazione tra gli attuatori responsivi 4DP WPC, l’architettura del materiale e le deformazioni igroscopiche, evidenziando il ruolo dei modelli modulari nella definizione della reazione allo stimolo e della configurazione finale dell’oggetto.

 

Info sull'articolo

Ricevuto: 17/09/2023; Revisionato: 13/10/2023; Accettato: 22/10/2023

Downloads

I dati di download non sono ancora disponibili.

##plugins.generic.articleMetricsGraph.articlePageHeading##

Biografie autore

David Correa, Università di Waterloo (Canada)

Architetto e PhD, è Professore Associato presso il Dipartimento di Architettura e partner dello Studio LLLab Architects. La sua ricerca si occupa di strutture e processi biologici come fonte di conoscenza per lo sviluppo di nuovi processi di fabbricazione e materiali avanzati. Il suo lavoro ha vinto oltre 35 premi internazionali.
E-mail: david.correa@uwaterloo.ca

Fabio Bianconi, Università of Perugia (Italia)

Ingegnere e PhD, è Professore Associato presso il Dipartimento di Ingegneria Civile e Ambientale. Svolge le sue ricerche nell’ambito della rappresentazione, della simulazione del paesaggio, della progettazione e del rilievo architettonico. È autore di articoli pubblicati su riviste e giornali nazionali e internazionali e di diversi trattati.
E-mail: fabio.bianconi@unipg.it

Marco Filippucci, Università di Perugia (Italia)

Ingegnere e PhD, è Ricercatore presso il Dipartimento di Ingegneria Civile e Ambientale e ha partecipato a numerosi progetti di ricerca nazionali. Autore di diversi lavori, la sua ricerca si concentra sull’immagine della città, sulle tecniche digitali di rappresentazione e sul disegno architettonico e del paesaggio.
E-mail: marco.filippucci@unipg.it

Giulia Pelliccia, Ingegnere

Ingegnere e PhD con una Tesi dal titolo ‘Hygroscopic indoor design – Morphological and material programming of responsive wooden bilayers and 4D printing shape-change mechanisms’, conduce ricerche sulle proprietà igroscopiche del legno e sull’efficienza energetica degli edifici in legno, concentrandosi sulla modellazione parametrica e sulla stampa 3D.
E-mail: giulia.pelliccia@outlook.it

Riferimenti bibliografici

Addington, M. and Schodek, D. L. (2005), Smart materials and new technologies – For the architecture and design professions, Architectural, Oxford.

Ahn, S.-H., Montero, M., Odell, D., Roundy, S. and Wright, P. K. (2002), “Anisotropic material properties of fused deposition modeling ABS”, in Rapid Prototyping Journal, vol. 8, issue 4, pp. 248-257. [Online] Available at: doi.org/10.1108/13552540210441166 [Accessed 13 October 2023].

Bianconi, F. and Filippucci, M. (2019), “Wood, CAD and AI – Digital modelling as place of convergence of natural and artificial intelligent to design timber architecture”, in Bianconi, F. and Filippucci, M. (eds), Digital Wood Design –Innovative Techniques of Representation in Architectural Design, Springer, Cham, pp. 3-60. [Online] Available at: doi.org/10.1007/978-3-030-03676-8_1 [Accessed 13 October 2023].

Bianconi, F., Filippucci, M., Pelliccia, G. and Correa, D. (2023), “Sfruttare l’intelligenza naturale del legno per migliorare la ventilazione passiva degli edifici | Harnessing the natural intelligence of wood to improve passive ventilation in buildings”, in Techne | Journal of Technology for Architecture and Environment, vol. 25, pp. 252-259. [Online] Available at: doi.org/10.36253/techne-13656 [Accessed 13 October 2023].

Bianconi, F., Filippucci, M., Pelliccia, G., Rossi, G., Tocci, T., Tribbiani, G. and Correa, D. (2022), “Low-Cost Depth-Camera – Open-source 3D displacement measurements for 4D printed hygroscopic composites”, in Nüchter, A., Grussenmeyer, P. and Kersten, T. (eds), 7th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 15-16 December 2022, Würzburg, Germany | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-2/W1-2022, pp. 23-28. [Online] Available at: doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-23-2022 [Accessed 13 October 2023].

Correa, D. (2022), 4D printed hygroscopic programmable material architectures, University of Stuttgart. [Online] Available at: elib.uni-stuttgart.de/handle/11682/12393 [Accessed 13 October 2023].

Correa, D. and Menges, A. (2015), “3D printed hygroscopic programmable material systems”, in Materials Research Society Online Proceedings, vol. 1800, issue 1, article 4, pp. 24-31. [Online] Available at: doi.org/10.1557/OPL.2015.644 [Accessed 13 October 2023].

Correa, D., Papadopoulou, A., Guberan, C., Jhaveri, N., Reichert, S., Menges, A. and Tibbits, S. (2015), “3D-Printed Wood – Programming Hygroscopic Material Transformations”, in 3D Printing and Additive Manufacturing, vol. 2, issue 3, pp. 106-116. [Online] Available at: doi.org/10.1089/3dp.2015.0022 [Accessed 13 October 2023].

Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A. and Speck, T. (2020), “4D pine scale – Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement”, in Philosophical Transactions of the Royal Society A | Mathematical, Physical and Engineering Sciences, vol. 378, issue 2167, article 20190445, pp. 1-18. [Online] Available at: doi.org/10.1098/rsta.2019.0445 [Accessed 13 October 2023].

Dawson, C., Vincent, J. F. V. and Rocca, A.-M. (1997), “How pine cones open”, in Nature, vol. 390, issue 6661, p. 668. [Online] Available at: doi.org/10.1038/37745 [Accessed 13 October 2023].

Dinwoodie, J. M. (2000), Timber – Its nature and behaviour, CRC Press, London.

Djafari Petroudy, S. R. (2017), “Physical and mechanical properties of natural fibers”, in Fan, M. and Fu, F. (eds), Advanced High Strength Natural Fibre Composites in Construction, Woodhead Publishing, pp. 59-83. [Online] Available at: doi.org/10.1016/B978-0-08-100411-1.00003-0 [Accessed 13 October 2023].

El-Dabaa, R. B., Salem, I. and Abdelmohsen, S. (2021), “Digitally Encoded Wood – 4D Printing of Hygroscopic Actuators for Architectural Responsive Skins”, in ASCAAD 2021 | Architecture in the Age of Disruptive Technologies, Cairo, pp. 240-252. [Online] Available at: researchgate.net/publication/350071831_DIGITALLY_ENCODED_WOOD _4D_Printing_of_Hygroscopic_Actuators_for_Architectural_Responsive_Skins [Accessed 13 October 2023].

Fell, D. R. (2010), Wood in the human environment – Restorative properties of wood in the built indoor environment, PhD Dissertation, University of British Columbia, Vancouver. [Online] Available at: doi.org/10.14288/1.0071305 [Accessed 13 October 2023].

Fratzl, P. (2007), “Biomimetic materials research – What can we really learn from nature’s structural materials?”, in Journal of the Royal Society Interface, vol. 4, issue 15, pp. 637-642. [Online] Available at: doi.org/10.1098/rsif.2007.0218 [Accessed 13 October 2023].

Ge, Q., Dunn, C. K., Qi, H. J. and Dunn, M. L. (2014), “Active origami by 4D printing”, in Smart Materials and Structures, vol. 23, issue 9, article 094007, pp. 1-15. [Online] Available at: doi.org/10.1088/0964-1726/23/9/094007 [Accessed 13 October 2023].

Giordano, G. (1981), Tecnologia del Legno – La materia prima – vol. 1, UTET, Torino.

Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. and Lewis, J. A. (2016), “Biomimetic 4D printing”, in Nature Materials, vol. 15, issue 4, pp. 413-418. [Online] Available at: doi.org/10.1038/NMAT4544 [Accessed 13 October 2023].

Holstov, A., Bridgens, B. and Farmer, G. (2015), “Hygromorphic materials for sustainable responsive architecture”, in Construction and Building Materials, vol. 98, pp. 570-582. [Online] Available at: doi.org/10.1016/j.conbuildmat.2015.08.136 [Accessed 13 October 2023].

Khosravani, M. R. and Reinicke, T. (2020), “3D-printed sensors – Current progress and future challenges”, in Sensors and Actuators A – Physical, vol. 305, article 111916, pp. 1-17. [Online] Available at: doi.org/10.1016/J.SNA.2020.111916 [Accessed 13 October 2023].

Lanvermann, C., Evans, R., Schmitt, U., Hering, S. and Niemz, P. (2013), “Distribution of structure and lignin within growth rings of Norway spruce”, in Wood Science and Technology, vol. 47, issue 3, pp. 627-641. [Online] Available at: doi.org/10.1007/s00226-013-0529-8 [Accessed 13 October 2023].

Le Duigou, A. and Correa, D. (2022), “4D printing of natural fiber composite”, in Bodaghi, M. and Zolfagharian, A. (eds), Smart Materials in Additive Manufacturing | Volume 1 – 4D Printing Principles and Fabrication Additive Manufacturing Materials and Technologies, Elsevier, pp. 297-333. [Online] Available at: doi.org/10.1016/B978-0-12-824082-3.00028-3 [Accessed 13 October 2023].

Le Duigou, A., Castro, M., Bevan, R. and Martin, N. (2016), “3D printing of wood fibre biocomposites – From mechanical to actuation functionality”, in Materials and Design, vol. 96, pp. 106-114. [Online] Available at: doi.org/10.1016/j.matdes.2016.02.018 [Accessed 13 October 2023].

Le Duigou, A., Chabaud, G., Scarpa, F. and Castro, M. (2019), “Bioinspired Electro-Thermo-Hygro Reversible Shape-Changing Materials by 4D Printing”, in Advanced Functional Materials, vol. 29, issue 40, article 1903280, pp. 1-10. [Online] Available at: doi.org/10.1002/adfm.201903280 [Accessed 13 October 2023].

Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R. and Castro, M. (2020), “A review of 3D and 4D printing of natural fibre biocomposites”, in Materials and Design, vol. 194, article 108911, pp. 1-26. [Online] Available at: doi.org/10.1016/J.MATDES.2020.108911 [Accessed 13 October 2023].

Mustapha, K. B. and Metwalli, K. M. (2021), “A review of fused deposition modelling for 3D printing of smart polymeric materials and composites”, in European Polymer Journal, vol. 156, article 110591, pp. 1-29. [Online] Available at: doi.org/10.1016/J.EURPOLYMJ.2021.110591 [Accessed 13 October 2023].

Ni, Y., Ji, R., Long, K., Bu, T., Chen, K. and Zhuang, S. (2017), “A review of 3D-printed sensors”, in Applied Spectroscopy Reviews, vol. 52, issue 7, pp. 623-652. [Online] Available at: doi.org/10.1080/05704928.2017.1287082 [Accessed 13 October 2023].

Poppinga, S., Correa, D., Bruchmann, B., Menges, A. and Speck, T. (2020), “Plant movements as concept generators for the development of biomimetic compliant mechanisms”, in Integrative and Comparative Biology, vol. 60, issue 4, pp. 886-895. [Online] Available at: doi.org/10.1093/icb/icaa028 [Accessed 13 October 2023].

Reichert, S., Menges, A. and Correa, D. (2015), “Meteorosensitive architecture – Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness”, in Computer-Aided Design, vol. 60, pp. 50-69. [Online] Available at: doi.org/10.1016/J.CAD.2014.02.010 [Accessed 13 October 2023].

Rüggeberg, M. and Burgert, I. (2015), “Bio-Inspired Wooden Actuators for Large Scale Applications”, in PLoS ONE, vol. 10, issue 4, pp. 1-16. [Online] Available at: doi.org/10.1371/journal.pone.0120718 [Accessed 13 October 2023].

Sheng-zuo, F., Wen-zhong, Y. and Xiang-xiang, F. (2004), “Variation of microfibril angle and its correlation to wood properties in poplars”, in Journal of Forestry Research, vol. 15, issue 4, pp. 261-267. [Online] Available at: doi.org/10.1007/bf02844949 [Accessed 13 October 2023].

Shiblee, M. N. I., Ahmed, K., Kawakami, M. and Furukawa, H. (2019), “4D Printing of Shape-Memory Hydrogels for Soft-Robotic Functions”, in Ansell, M. P. (ed.), Advanced Materials Technologies, vol. 4, issue 8, pp. 1-10. [Online] Available at: doi.org/10.1002/admt.201900071 [Accessed 13 October 2023].

Spear, M. J., Eder, A. and Carus, M. (2015), “Wood polymer composites”, in Wood Composites, pp. 195-249. [Online] Available at: doi.org/10.1016/B978-1-78242-454-3.00010-X [Accessed 13 October 2023].

Tahouni, Y., Cheng, T., Wood, D., Sachse, R., Thierer, R., Bischoff, M. and Menges, A. (2020), “Self-shaping Curved Folding – A 4D-printing method for fabrication of self-folding curved crease structures”, in Whiting, E., Hart, J., Sung, C., Peek, N., Akbarzadeh, M., Aukes, D., Schulz, A., Taylor, H. and Kim, J. (eds), Proceedings SCF 2020 – ACM Symposium on Computational Fabrication, Machinery, New York, article 5, pp. 1-11. [Online] Available at: doi.org/10.1145/3424630.3425416 [Accessed 13 October 2023].

Tahouni, Y., Krüger, F., Poppinga, S., Wood, D., Pfaff, M., Rühe, J., Speck, T. and Menges, A. (2021), “Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness”, in Bioinspiration and Biomimetics, vol. 16, issue 5, article 055002, pp. 1-14. [Online] Available at: doi.org/10.1088/1748-3190/ac0c8e [Accessed 13 October 2023].

Tibbits, S. (2013), “The emergence of 4D printing”, in TED conference. [Online] Available at: youtube.com/watch?v=0gMCZFHv9v8 [Accessed 13 October 2023].

Timoshenko, S. (1925), “Analysis of Bi-Metal Thermostats”, in JOSA | Journal of Optical Society of America, vol. 11, issue 3, pp. 233-255. [Online] Available at: doi.org/10.1364/JOSA.11.000233 [Accessed 13 October 2023].

Tomec, D. K., Straže, A., Haider, A. and Kariž, M. (2021), “Hygromorphic Response Dynamics of 3D-Printed Wood-PLA Composite Bilayer Actuators”, in Polymers, vol. 13, issue 19, article 3209, pp. 1-16. [Online] Available at: doi.org/10.3390/POLYM13193209 [Accessed 13 October 2023].

Udupa, G., Rao, S. S. and Gangadharan, K. V. (2014), “Functionally Graded Composite Materials – An Overview”, in Procedia Materials Science, vol. 5, pp. 1291-1299. [Online] Available at: doi.org/10.1016/j.mspro.2014.07.442 [Accessed 13 October 2023].

Ugolev, B. N. (2014), “Wood as a natural smart material”, in Wood Science and Technology, vol. 48, issue 3, pp. 553-568. [Online] Available at: doi.org/10.1007/s00226-013-0611-2 [Accessed 13 October 2023].

Vailati, C., Bachtiar, E., Hass, P., Burgert, I. and Rüggeberg, M. (2018), “An autonomous shading system based on coupled wood bilayer elements”, in Energy and Buildings, vol. 158, pp. 1013-1022. [Online] Available at: doi.org/10.1016/J.ENBUILD.2017.10.042 [Accessed 13 October 2023].

Witt, C. (1987), “Hylomorphism in Aristotle”, in The Journal of Philosophy, vol. 84, issue 11, pp. 673-679. [Online] Available at: doi.org/10.5840/jphil1987841116 [Accessed 13 October 2023].

Close-up view of the deformed actuator, showing the upward and downward configurations (credit: G. Pelliccia, 2023). AGATHÓN 14 | 2023

##submission.downloads##

Pubblicato

31-12-2023 — Aggiornato il 02-01-2024

Versioni

Come citare

Correa, D., Bianconi, F., Filippucci, M. e Pelliccia, G. (2024) «Pattern modulari nel design igroscopico con stampa 4D – Forma e programmazione del materiale», AGATHÓN | International Journal of Architecture Art and Design, 14, pagg. 264–273. doi: 10.19229/2464-9309/14222023.
No Related Submission Found